Have a personal or library account? Click to login
Development and characterization of graphene-reinforced Inconel 825 composite alloy for high temperature applications Cover

Development and characterization of graphene-reinforced Inconel 825 composite alloy for high temperature applications

Open Access
|Jun 2025

References

  1. [1] Ozgun, O., Aslantas, K., Ercetin, A., Powder metallurgy Mg-Sn alloys: Production and characterization, Sci. Iran., 2020, 27(3): 1255–1265. 10.24200/sci.2019.50212.1578
    Ozgun O. Aslantas K. Ercetin A. Powder metallurgy Mg-Sn alloys: Production and characterization Sci. Iran. 2020 27 3 1255 1265 10.24200/sci.2019.50212.1578
  2. [2] Akkoyun, F., Cevik, Z.A., Ozsoy, K., Ercetin, A., Arpaci, I., Image processing approach to investigate the correlation between machining parameters and burr formation in micro-milling processes of selective-laser-melted AISI 316L, Micromachines, 2023, 14(7): 1376. 10.3390/mi14071376
    Akkoyun F. Cevik Z.A. Ozsoy K. Ercetin A. Arpaci I. Image processing approach to investigate the correlation between machining parameters and burr formation in micro-milling processes of selective-laser-melted AISI 316L Micromachines 2023 14 7 1376 10.3390/mi14071376
  3. [3] El-Eskandarany, M.S., Al-Hazza, A., Al-Hajji, L.A., Mechanically assisted Solid-State mixing and Spark plasma sintering for fabrication of bulk nanocomposite (WC/7(10Co/4cr))-Based ZrO2 systems, J. Mater. Eng. Perform., 2018, 26(4): 1540–1550. 10.1007/s11665-017-2580-3
    El-Eskandarany M.S. Al-Hazza A. Al-Hajji L.A. Mechanically assisted Solid-State mixing and Spark plasma sintering for fabrication of bulk nanocomposite (WC/7(10Co/4cr))-Based ZrO2 systems J. Mater. Eng. Perform. 2018 26 4 1540 1550 10.1007/s11665-017-2580-3
  4. Munir, Z.A., Quach, D.V., Ohyanagi, M., Electric current activation of sintering: a review of the pulsed electric current sintering process, J. Am. Ceram. Soc., 2011, 94(1): 1–19
  5. Acchar, W., Camara, C.R.F.D., Cairo, C.A.A., Filgueira, M., Mechanical performance of alumina reinforced with NbC, TiC and WC, Mater. Res., 2012, 15: 821–824
  6. [6] Ercetin, A., Özgün, Ö., Aslantaş, K., Der, O., Yalçın, B., Şimşir, E., et al., Microstructural and mechanical behavior investigations of NB-Reinforced MG–SN–AL–ZN–MN matrix magnesium composites, Metals, 2023, 13(6): 1097. 10.3390/met13061097
    Ercetin A. Özgün Ö. Aslantaş K. Der O. Yalçın B. Şimşir E. Microstructural and mechanical behavior investigations of NB-Reinforced MG–SN–AL–ZN–MN matrix magnesium composites Metals 2023 13 6 1097 10.3390/met13061097
  7. [7] Ogunbiyi, O., Jamiru, T., Sadiku, R., Adesina, O., Olajide, J.L., Beneke, L., Optimization of spark plasma sintering parameters of inconel 738LC alloy using response surface methodology (RSM), Int. J. Lightweight Mater. Manuf., 2020, 3(2): 177–188. 10.1016/j.ijlmm.2019.10.002
    Ogunbiyi O. Jamiru T. Sadiku R. Adesina O. Olajide J.L. Beneke L. Optimization of spark plasma sintering parameters of inconel 738LC alloy using response surface methodology (RSM) Int. J. Lightweight Mater. Manuf. 2020 3 2 177 188 10.1016/j.ijlmm.2019.10.002
  8. [8] Pakseresht, A., Javadi, A., Bahrami, M., Khodabakhshi, F., Simchi, A., Spark plasma sintering of a multilayer thermal barrier coating on Inconel 738 superalloy: Microstructural development and hot corrosion behavior, Ceram. Int., 2016, 42(2): 2770–2779. 10.1016/j.ceramint.2015.11.008
    Pakseresht A. Javadi A. Bahrami M. Khodabakhshi F. Simchi A. Spark plasma sintering of a multilayer thermal barrier coating on Inconel 738 superalloy: Microstructural development and hot corrosion behavior Ceram. Int. 2016 42 2 2770 2779 10.1016/j.ceramint.2015.11.008
  9. [9] Yan, S., Wang, Y., Wang, Q., Zhang, C., Chen, D., Cui, G., Enhancing mechanical properties of the Spark plasma sintered Inconel 718 alloy by controlling the Nano-Scale precipitations, Materials, 2019, 12(20): 3336. 10.3390/ma12203336
    Yan S. Wang Y. Wang Q. Zhang C. Chen D. Cui G. Enhancing mechanical properties of the Spark plasma sintered Inconel 718 alloy by controlling the Nano-Scale precipitations Materials 2019 12 20 3336 10.3390/ma12203336
  10. [10] Rutkowski, P., Huebner, J., Graboś, A., Kata, D., Pasiut, K., Handke, B., et al., Thermal properties of spark plasma sintered Inconel 625 modified by titanium zirconium mixed carbide, J. Therm. Anal. Calorim., 2023, 148(15): 7633–7652. 10.1007/s10973-023-12259-1
    Rutkowski P. Huebner J. Graboś A. Kata D. Pasiut K. Handke B. Thermal properties of spark plasma sintered Inconel 625 modified by titanium zirconium mixed carbide J. Therm. Anal. Calorim. 2023 148 15 7633 7652 10.1007/s10973-023-12259-1
  11. [11] Zhou, S., Xu, T., Hu, C., Wu, H., Liu, H., Ma, X., A comparative study of tungsten carbide and carbon nanotubes reinforced Inconel 625 composite coatings fabricated by laser cladding, Opt. Laser Technol., 2021, 140: 106967. 10.1016/j.optlastec.2021.106967
    Zhou S. Xu T. Hu C. Wu H. Liu H. Ma X. A comparative study of tungsten carbide and carbon nanotubes reinforced Inconel 625 composite coatings fabricated by laser cladding Opt. Laser Technol. 2021 140 106967 10.1016/j.optlastec.2021.106967
  12. [12] Graboś, A., Huebner, J., Rutkowski, P., Zhang, S., Kuo, Y., Kata, D., et al., Microstructure and hardness of spark plasma sintered inconel 625-NBC composites for High-Temperature applications, Materials, 2021, 14(16): 4606. 10.3390/ma14164606
    Graboś A. Huebner J. Rutkowski P. Zhang S. Kuo Y. Kata D. Microstructure and hardness of spark plasma sintered inconel 625-NBC composites for High-Temperature applications Materials 2021 14 16 4606 10.3390/ma14164606
  13. [13] Murakami, T., Korenaga, A., Ohana, T., Microstructure, mechanical properties, oxidation behaviors, and cutting performance of TiC0·5N0.5-X (X: W, Mo) cermet specimens prepared by spark plasma sintering, Ceram. Int., 2021, 47(2): 1986–1999. 10.1016/j.ceramint.2020.09.030
    Murakami T. Korenaga A. Ohana T. Microstructure, mechanical properties, oxidation behaviors, and cutting performance of TiC0·5N0.5-X (X: W, Mo) cermet specimens prepared by spark plasma sintering Ceram. Int. 2021 47 2 1986 1999 10.1016/j.ceramint.2020.09.030
  14. [14] Zhang, Z., Han, B., Huang, J., Han, Y., Zhou, Y., Kakegawa, K., et al., Mechanical behavior of cryomilledni superalloy by spark plasma sintering, Metall. Mater. Trans. A, 2009, 40(9): 2023–2029. 10.1007/s11661-009-9914-1
    Zhang Z. Han B. Huang J. Han Y. Zhou Y. Kakegawa K. Mechanical behavior of cryomilledni superalloy by spark plasma sintering Metall. Mater. Trans. A 2009 40 9 2023 2029 10.1007/s11661-009-9914-1
  15. [15] Oglezneva, S.A., Kachenyuk, M.N., Smetkin, A.A., Savich, V.V., Functional gradient heat-resistant materials manufactured by spark plasma sintering, Mater. Sci. Forum, 2021, 1037: 464–472. 10.4028/www.scientific.net/msf.1037.464
    Oglezneva S.A. Kachenyuk M.N. Smetkin A.A. Savich V.V. Functional gradient heat-resistant materials manufactured by spark plasma sintering Mater. Sci. Forum 2021 1037 464 472 10.4028/www.scientific.net/msf.1037.464
  16. [16] Diouf, S., Molinari, A., Densification mechanisms in spark plasma sintering: Effect of particle size and pressure, Powder Technol., 2012, 221: 220–227. 10.1016/j.powtec.2012.01.005
    Diouf S. Molinari A. Densification mechanisms in spark plasma sintering: Effect of particle size and pressure Powder Technol. 2012 221 220 227 10.1016/j.powtec.2012.01.005
  17. [17] Sharma, D., Kumar, V., Singh, S., Parametric study of the spark plasma sintering process on the mechanical properties of multi-layer graphene reinforced Ti6Al4V nanocomposites, Trans. Indian Inst. Met., 2023, 76(4): 1015–1025. 10.1007/s12666-022-02811-2
    Sharma D. Kumar V. Singh S. Parametric study of the spark plasma sintering process on the mechanical properties of multi-layer graphene reinforced Ti6Al4V nanocomposites Trans. Indian Inst. Met. 2023 76 4 1015 1025 10.1007/s12666-022-02811-2
  18. [18] Shongwe, M.B., Diouf, S., Durowoju, M.O., Olubambi, P.A., Effect of sintering temperature on the microstructure and mechanical properties of Fe–30% Ni alloys produced by spark plasma sintering, J. Alloy. Compd., 2015, 649: 824–832. 10.1016/j.jallcom.2015.07.223
    Shongwe M.B. Diouf S. Durowoju M.O. Olubambi P.A. Effect of sintering temperature on the microstructure and mechanical properties of Fe–30% Ni alloys produced by spark plasma sintering J. Alloy. Compd. 2015 649 824 832 10.1016/j.jallcom.2015.07.223
  19. [19] Li, X., Yang, C., Chen, W., Qu, S., Li, Y., Microstructure and mechanical properties of SPSed (Spark Plasma Sintered) Ti66Nb13Cu8Ni6.8Al6.2 bulk alloys with and without WC addition, Mater. Trans., 2009, 50(7): 1720–1724. 10.2320/matertrans.mf200924
    Li X. Yang C. Chen W. Qu S. Li Y. Microstructure and mechanical properties of SPSed (Spark Plasma Sintered) Ti66Nb13Cu8Ni6.8Al6.2 bulk alloys with and without WC addition Mater. Trans. 2009 50 7 1720 1724 10.2320/matertrans.mf200924
  20. [20] Sunil, B.R., Ganapathy, C., Kumar, T.S., Chakkingal, U., Processing and mechanical behavior of lamellar structured degradable magnesium–hydroxyapatite implants, J. Mech. Behav. Biomed. Mater., 2014, 40: 178–189. 10.1016/j.jmbbm.2014.08.016
    Sunil B.R. Ganapathy C. Kumar T.S. Chakkingal U. Processing and mechanical behavior of lamellar structured degradable magnesium–hydroxyapatite implants J. Mech. Behav. Biomed. Mater. 2014 40 178 189 10.1016/j.jmbbm.2014.08.016
  21. [21] Yuan, X., Qiu, H., Zeng, F., Luo, W., Li, H., Wang, X., et al., Microstructural evolution and mechanical properties of Inconel 625 superalloy fabricated by pulsed microplasma rapid additive manufacturing, J. Manuf. Process., 2022, 77: 63–74. 10.1016/j.jmapro.2022.03.008
    Yuan X. Qiu H. Zeng F. Luo W. Li H. Wang X. Microstructural evolution and mechanical properties of Inconel 625 superalloy fabricated by pulsed microplasma rapid additive manufacturing J. Manuf. Process. 2022 77 63 74 10.1016/j.jmapro.2022.03.008
  22. [22] Ogunbiyi, O., Jamiru, T., Sadiku, R., Adesina, O., Adesina, O.S., Obadele, B.A., Spark plasma sintering of graphene-reinforced Inconel 738LC alloy: wear and corrosion performance, Met. Mater. Int., 2022, 28(3): 695–709. 10.1007/s12540-020-00871-x
    Ogunbiyi O. Jamiru T. Sadiku R. Adesina O. Adesina O.S. Obadele B.A. Spark plasma sintering of graphene-reinforced Inconel 738LC alloy: wear and corrosion performance Met. Mater. Int. 2022 28 3 695 709 10.1007/s12540-020-00871-x
  23. [23] Bhattacharya, R., Annasamy, M., Cizek, P., Kamaraj, M., Muralikrishna, G.M., Hodgson, P., et al., Evolution of phase constitution with mechanical alloying and spark plasma sintering of nanocrystalline AlxCoCrFeNi (x  =  0, 0.3, 0.6, 1 mol) high-entropy alloys, J. Mater. Res., 2022, 37: 959–975. 10.1557/s43578-021-00483-0
    Bhattacharya R. Annasamy M. Cizek P. Kamaraj M. Muralikrishna G.M. Hodgson P. Evolution of phase constitution with mechanical alloying and spark plasma sintering of nanocrystalline Al x CoCrFeNi (x  =  0, 0.3, 0.6, 1 mol) high-entropy alloys J. Mater. Res. 2022 37 959 975 10.1557/s43578-021-00483-0
  24. [24] Narayana, P., Kim, S., Hong, J., Reddy, N., Yeom, J., Tensile properties of a newly developed high-temperature titanium alloy at room temperature and 650°C, Mater. Sci. Eng. A, 2018, 718: 287–291. 10.1016/j.msea.2018.01.113
    Narayana P. Kim S. Hong J. Reddy N. Yeom J. Tensile properties of a newly developed high-temperature titanium alloy at room temperature and 650°C Mater. Sci. Eng. A 2018 718 287 291 10.1016/j.msea.2018.01.113
  25. [25] Tingaud, D., Jenei, P., Krawczynska, A., Mompiou, F., Gubicza, J., Dirras, G., Investigation of deformation micro-mechanisms in nickel consolidated from a bimodal powder by spark plasma sintering, Mater. Charact., 2015, 99: 118–127. 10.1016/j.matchar.2014.11.025
    Tingaud D. Jenei P. Krawczynska A. Mompiou F. Gubicza J. Dirras G. Investigation of deformation micro-mechanisms in nickel consolidated from a bimodal powder by spark plasma sintering Mater. Charact. 2015 99 118 127 10.1016/j.matchar.2014.11.025
  26. [26] Oketola, A., Jamiru, T., Adegbola, A.T., Ogunbiyi, O., Rominiyi, A.L., Smith, S., Spark plasma sintering of ceramic-reinforced binary/ternary nickel and titanium metal matrix composites: Mechanical properties, microstructure, and densification – A review, J. Alloy. Metall. Syst., 2023, 3: 100031. 10.1016/j.jalmes.2023.100031
    Oketola A. Jamiru T. Adegbola A.T. Ogunbiyi O. Rominiyi A.L. Smith S. Spark plasma sintering of ceramic-reinforced binary/ternary nickel and titanium metal matrix composites: Mechanical properties, microstructure, and densification – A review J. Alloy. Metall. Syst. 2023 3 100031 10.1016/j.jalmes.2023.100031
  27. Chan, K.S., A grain boundary fracture model for predicting dynamic embrittlement and oxidation-induced cracking in superalloys, Metall. Mater. Trans. A, 2015, 46: 2491–2505
  28. [28] Rajkumar, V., Vishnukumar, M., Sowrirajan, M., Kannan, A.R., Microstructure, mechanical properties and corrosion behaviour of Incoloy 825 manufactured using wire arc additive manufacturing, Vacuum, 2022, 203: 111324. 10.1016/j.vacuum.2022.111324
    Rajkumar V. Vishnukumar M. Sowrirajan M. Kannan A.R. Microstructure, mechanical properties and corrosion behaviour of Incoloy 825 manufactured using wire arc additive manufacturing Vacuum 2022 203 111324 10.1016/j.vacuum.2022.111324
  29. [29] Al-Saadi, M., Sandberg, F., Jönsson, P.G., Hulme-Smith, C.N., Modelling of strengthening mechanisms in wrought Nickel-Based 825 alloy subjected to solution annealing, Metals, 2021, 11(5): 771. 10.3390/met11050771
    Al-Saadi M. Sandberg F. Jönsson P.G. Hulme-Smith C.N. Modelling of strengthening mechanisms in wrought Nickel-Based 825 alloy subjected to solution annealing Metals 2021 11 5 771 10.3390/met11050771
  30. [30] Lu, H., Yang, C., Li, X., Cheng, Q., Ma, H., Wang, Z., et al., Microstructure evolution and superelasticity of Ti-24Nb-xZr alloys fabricated by spark plasma sintering, J. Alloy. Compd., 2020, 823: 153875. 10.1016/j.jallcom.2020.153875
    Lu H. Yang C. Li X. Cheng Q. Ma H. Wang Z. Microstructure evolution and superelasticity of Ti-24Nb-xZr alloys fabricated by spark plasma sintering J. Alloy. Compd. 2020 823 153875 10.1016/j.jallcom.2020.153875
  31. [31] Rominiyi, A.L., Shongwe, M.B., Ogunmuyiwa, E.N., Babalola, B.J., Lepele, P.F., Olubambi, P.A., Effect of nickel addition on densification, microstructure and wear behaviour of spark plasma sintered CP-titanium, Mater. Chem. Phys., 2020, 240: 122130. 10.1016/j.matchemphys.2019.122130
    Rominiyi A.L. Shongwe M.B. Ogunmuyiwa E.N. Babalola B.J. Lepele P.F. Olubambi P.A. Effect of nickel addition on densification, microstructure and wear behaviour of spark plasma sintered CP-titanium Mater. Chem. Phys. 2020 240 122130 10.1016/j.matchemphys.2019.122130
DOI: https://doi.org/10.2478/msp-2025-0019 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 63 - 77
Submitted on: Dec 5, 2024
Accepted on: Jun 12, 2025
Published on: Jun 30, 2025
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Sivakumar Ponmalai, Dhavamani Chinnathambi, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.