Have a personal or library account? Click to login
Copper oxide–ferric oxide nanocomposite: Synthesis, characterization, and antibacterial and antifungal properties Cover

Copper oxide–ferric oxide nanocomposite: Synthesis, characterization, and antibacterial and antifungal properties

Open Access
|Nov 2024

References

  1. Abdelmoneim, H.M., Taha, T.H., Elnouby, M.S., AbuShady, H.M., Extracellular biosynthesis, OVAT/statistical optimization, and characterization of silver nanoparticles (AgNPs) using leclercia adecarboxylata THHM and its antimicrobial activity, Microb. Cell Fact., 2022, 21: 277
  2. Ali, A., Zafar, H., Zia, M., ul Haq, I., Phull, A.R., Ali, J.S., et al., Synthesis, characterization, applications, and challenges of iron oxide nanoparticles, Nanotechnol. Sci. Appl., 2016, 9: 49–67
  3. Samrot, A.V., Sahithya, C.S., Selvarani, J., Purayil, S.K., Ponnaiah, P., A review on synthesis, characterization and potential biological applications of superparamagnetic iron oxide nanoparticles, Curr. Res. Green. Sustain. Chem., 2021, 4: 100042
  4. Elnouby, M.S., Taha, T.H., Abu-Saied, M.A., Alamri, S.A., Mostafa, Y.S.M., Hashem, M., Green and chemically synthesized magnetic iron oxide nanoparticles-based chitosan composites: preparation, characterization, and future perspectives, J. Mater. Sci. Mater Electron., 2021, 32: 10587–10599
  5. Moustafa, M., Alamri, S., Elnouby, M., Taha, T., Abu-Saied, M.A., Shati, A., et al., Hydrothermal preparation of TiO2-Ag nanoparticles and its antimicrobial performance against human pathogenic microbial cells in water, Biocell, 2018, 42: 93
  6. Aragaw, T.A., Bogale, F.M., Aragaw, B.A., Iron-based nanoparticles in wastewater treatment: a review on synthesis methods, applications, and removal mechanisms, J. Saudi Chem. Soc., 2021, 25: 101280
  7. Montiel Schneider, M.G., Martín, M.J., Otarola, J., Vakarelska, E., Simeonov, V., Lassalle, V., et al., Biomedical applications of iron oxide nanoparticles: current insights progress and perspectives, Pharmaceutics, 2022, 14: 204
  8. Zhao, H., Zhu, Q., Gao, Y., Zhai, P., Ma, D., Iron oxide nanoparticles supported on pyrolytic graphene oxide as model catalysts for Fischer Tropsch synthesis, Appl. Catal. A Gen., 2013, 456: 233–239
  9. [9] Tartaj, P., Morales, M.P., Gonzalez-Carreño, T., Veintemillas-Verdaguer, S., Serna, C.J., The iron oxides strike back: From biomedical applications to energy storage devices and photoelectrochemical water splitting, Adv. Mater., 2011, 23: 5243–5249, 10.1002/adma.201101368
    Tartaj P. Morales M.P. Gonzalez-Carreño T. Veintemillas-Verdaguer S. Serna C.J. The iron oxides strike back: From biomedical applications to energy storage devices and photoelectrochemical water splitting Adv. Mater. 2011 23 5243 5249 10.1002/adma.201101368
  10. Baig, N., Kammakakam, I., Falath, W., Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges, Mater. Adv., 2021, 2: 1821–1871
  11. Khan, I., Saeed, K., Khan, I., Nanoparticles: properties, applications and toxicities, Arab. J. Chem., 2019, 12: 908–931
  12. Tran, H.-V., Ngo, N.M., Medhi, R., Srinoi, P., Liu, T., Rittikulsittichai, S., et al., Multifunctional iron oxide magnetic nanoparticles for biomedical applications: a review, Materials (Basel), 2022, 15: 503
  13. Birhanu, R., Afrasa, M.A., Hone, F.G., Recent progress of advanced metal-oxide nanocomposites for effective and low-cost antimicrobial activates: a review, J. Nanomater., 2023, 2023: 1–25
  14. Jin, P., Dalgarno, S.J., Atwood, J.L., Mixed metal-organic nanocapsules, Coord. Chem. Rev., 2010, 254: 1760–1768
  15. Su, Y., Shen, Z., Long, X., Chen, C., Qi, L., Chao, X., Gaussian filtering method of evaluating the elastic/elasto-plastic properties of sintered nanocomposites with quasi-continuous volume distribution, Mater. Sci. Eng. A, 2023, 872: 145001
  16. Owonubi, S.J., Ateba, C.N., Revaprasadu, N., Co-assembled ZnO-Fe2O3x-CuOx nano-oxide materials for antibacterial protection, Phosphorus Sulfur Silicon Relat. Elem., 2020, 195: 981–987
  17. Eldesouky, S.E., Aseel, D.G., Elnouby, M.S., Galal, F.H., Al-Farga, A., Hafez, E.E., et al., Synthesis of tungsten oxide, iron oxide, and copper-doped iron oxide nanocomposites and evaluation of their mixing effects with cyromazine against Spodoptera littoralis (boisduval), ACS Omega, 2023, 8: 44867–44879
  18. Rashad, M.M., Rayan, D.A., Ramadan, A.A., Optical and magnetic properties of CuO/CuFe2O4 nanocomposites, J. Mater. Sci. Mater. Electron., 2013, 24: 2742–2749
  19. Pachaiappan, R., Rajendran, S., Show, P.L., Manavalan, K., Naushad, M., Metal/metal oxide nanocomposites for bactericidal effect: a review, Chemosphere, 2021, 272: 128607
  20. Attarilar, S., Yang, J., Ebrahimi, M., Wang, Q., Liu, J., Tang, Y., et al., The toxicity phenomenon and the related occurrence in metal and metal oxide nanoparticles: a brief review from the biomedical perspective, Front. Bioeng. Biotechnol., 2020, 8: 822
  21. Lu, W., Wang, M., Wu, J., Jiang, Q., Jin, J., Jin, Q., et al., Spread of chloramphenicol and tetracycline resistance genes by plasmid mobilization in agricultural soil, Environ. Pollut., 2020, 260: 113998
  22. [22] Rose, G.R.F., Howdon, J.B., Bayley, C.H., Observations on the use of copper formate as a rotproofer for cotton fabric, Text. Res. J., 1959, 29: 996–1005, 10.1177/004051755902901210
    Rose G.R.F. Howdon J.B. Bayley C.H. Observations on the use of copper formate as a rotproofer for cotton fabric Text. Res. J. 1959 29 996 1005 10.1177/004051755902901210
  23. [23] Rossmoore, H.W., The interaction of formaldehyde, isothiazolone and copper, Int. Biodeterior., 1990, 26: 225–235, 10.1016/0265-3036(90)90062-C
    Rossmoore H.W. The interaction of formaldehyde, isothiazolone and copper Int. Biodeterior. 1990 26 225 235 10.1016/0265-3036(90)90062-C
  24. [24] Abrams, E., Bottoms, R.R., A copper process for prolonged microbiological protection of cellulosic fabrics by chemical modification, Text. Res. J., 1956, 26: 630–640, 10.1177/004051755602600808
    Abrams E. Bottoms R.R. A copper process for prolonged microbiological protection of cellulosic fabrics by chemical modification Text. Res. J. 1956 26 630 640 10.1177/004051755602600808
  25. Zhou, Y., Sun, P., Cao, Y., Yang, J., Wu, Q., Peng, J., Biocompatible copper formate-based nanoparticles with strong antibacterial properties for wound healing, J. Nanobiotechnol., 2023, 21: 474
  26. [26] Aamer, H.A., Al-Askar, A.A., Gaber, M.A., El-Tanbouly, R., Abdelkhalek, A., Behiry, S., et al., Extraction, phytochemical characterization, and antifungal activity of Salvia rosmarinus extract, Open. Chem., 2023, 21: 20230124, 10.1515/chem-2023-0124
    Aamer H.A. Al-Askar A.A. Gaber M.A. El-Tanbouly R. Abdelkhalek A. Behiry S. Extraction, phytochemical characterization, and antifungal activity of Salvia rosmarinus extract Open. Chem. 2023 21 20230124 10.1515/chem-2023-0124
  27. [27] Hammer, P.E., Evensen, K.B., Janisiewicz, W.J., Postharvest control of botrytis cinerea infections on cut rose flowers with pyrrolnitrin, HortScience, 2019, 25: 1139a, 10.21273/hortsci.25.9.1139a
    Hammer P.E. Evensen K.B. Janisiewicz W.J. Postharvest control of botrytis cinerea infections on cut rose flowers with pyrrolnitrin HortScience 2019 25 1139a 10.21273/hortsci.25.9.1139a
  28. Miller, S.A., Ferreira, J.P., LeJeune, J.T., Antimicrobial use and resistance in plant agriculture: a one health perspective, Agriculture, 2022, 12: 289
  29. Stockwell, V.O., Duffy, B., Use of antibiotics in plant agriculture, Rev. Sci. Tech. Int. Des. Epizoot., 2012, 31: 199–210
  30. [30] Campbell, C.K., Johnson, E.M., Warnock, D.W. Identification of pathogenic fungi, John Wiley & Sons, Hoboken, NJ, USA, 2013, 10.1002/9781118520055
    Campbell C.K. Johnson E.M. Warnock D.W. Identification of pathogenic fungi John Wiley & Sons Hoboken, NJ, USA 2013 10.1002/9781118520055
  31. [31] Dugan, F.M. The identification of fungi: an illustrated introduction with keys, glossary, and guide to literaturey, APS Press, Saint Paul, MN, USA, 2006, 10.1094/9780890545041
    Dugan F.M. The identification of fungi: an illustrated introduction with keys, glossary, and guide to literaturey APS Press, Saint Paul, MN, USA 2006 10.1094/9780890545041
  32. [32] White, T.J., Bruns, T., Lee, S., Taylor, J., Amplification and direct sequencing of fungal ribosomal rna genes for phylogenetics, PCR Protoc., 1990, 18: 315–322, 10.1016/b978-0-12-372180-8.50042-1
    White T.J. Bruns T. Lee S. Taylor J. Amplification and direct sequencing of fungal ribosomal rna genes for phylogenetics PCR Protoc. 1990 18 315 322 10.1016/b978-0-12-372180-8.50042-1
  33. Soliman, S.A., Al-Askar, A.A., Sobhy, S., Samy, M.A., Hamdy, E., Sharaf, O.A., et al., Differences in pathogenesis-related protein expression and polyphenolic compound accumulation reveal insights into tomato–pythium aphanidermatum interaction, Sustainability, 2023, 15: 6551
  34. El-Bilawy, E.H., Al-Mansori, A.-N.A., Soliman, S.A., Alotibi, F.O., Al-Askar, A.A., Arishi, A.A., et al., Antifungal, antiviral, and HPLC analysis of phenolic and flavonoid compounds of amphiroa anceps extract, Sustainability, 2022, 14: 12253
  35. Al-Askar, A.A., Bashir, S., Mohamed, A.E., Sharaf, O.A., Nabil, R., Su, Y., et al., Antimicrobial efficacy and HPLC analysis of polyphenolic compounds in a whole-plant extract of Eryngium campestre, Separations, 2023, 10: 362
  36. [36] Kumar, A., Shukla, R., Singh, P., Prasad, C.S., Dubey, N.K., Assessment of Thymus vulgaris L. essential oil as a safe botanical preservative against post harvest fungal infestation of food commodities, Innov. Food Sci. Emerg. Technol., 2008, 9: 575–580, 10.1016/j.ifset.2007.12.005
    Kumar A. Shukla R. Singh P. Prasad C.S. Dubey N.K. Assessment of Thymus vulgaris L. essential oil as a safe botanical preservative against post harvest fungal infestation of food commodities Innov. Food Sci. Emerg. Technol. 2008 9 575 580 10.1016/j.ifset.2007.12.005
  37. [37] Hamdy, E., El-Gendi, H., Al-Askar, A., El-Far, A., Kowalczewski, P., Behiry, S., et al., Copper oxide nanoparticles-mediated Heliotropium bacciferum leaf extract: antifungal activity and molecular docking assays against strawberry pathogens, Open. Chem., 2024, 22: 20240028, 10.1515/chem-2024-0028
    Hamdy E. El-Gendi H. Al-Askar A. El-Far A. Kowalczewski P. Behiry S. Copper oxide nanoparticles-mediated Heliotropium bacciferum leaf extract: antifungal activity and molecular docking assays against strawberry pathogens Open. Chem. 2024 22 20240028 10.1515/chem-2024-0028
  38. Heatley, N.G., A method for the assay of penicillin, Biochem. J., 1944, 38: 61
  39. [39] Balouiri, M., Sadiki, M., Ibnsouda, S.K., Methods for in vitro evaluating antimicrobial activity: a review, J. Pharm. Anal., 2016, 6: 71–79, 10.1016/j.jpha.2015.11.005
    Balouiri M. Sadiki M. Ibnsouda S.K. Methods for in vitro evaluating antimicrobial activity: a review J. Pharm. Anal. 2016 6 71 79 10.1016/j.jpha.2015.11.005
  40. Statistical Analysis System (SAS). Institute INC, PC-SAS user guide, version 8. North Carolina Statistical Analysis System Institute, Inc., Cary, NC 27513, USA, 2002
  41. Ramadan, M., Elnouby, M.S., El-Shazly, O., El-Wahidy, E.F., Farag, A.A.M., Roushdy, N., Facile fabrication, structural and electrical investigations of cadmium sulfide nanoparticles for fuel cell performance, Mater. Renew. Sustain. Energy, 2022, 11: 1–10
  42. Taha, T.H., Abu-Saied, M.A., Elnouby, M.S., Hashem, M., Alamri, S., Mostafa, Y., Designing of pressure-free filtration system integrating polyvinyl alcohol/chitosan-silver nanoparticle membrane for purification of microbe-containing water, Water Supply, 2019, 19: 2443–2452
  43. Nabil, M., Motaweh, H.A., Dendritic porous silicon as a heavy metal removal (copper element), Eвpaзийcкий Coюз Yчeныx, 2019, 4: 55–59
  44. Farahmandjou, M., Soflaee, F., Synthesis and characterization of α-Fe2O3 nanoparticles by simple co-precipitation method, Phys. Chem. Res., 2015, 3: 191–196
  45. Nabil, M., Mahmoud, K.R., Nomier, R., El-Maghraby, E.-M., Motaweh, H., Nano-porous-silicon powder as an environmental friend, Materials (Basel), 2021, 14: 4252
  46. Eltarahony, M., Abu-Serie, M., Hamad, H., Zaki, S., Abd-El-Haleem, D., Unveiling the role of novel biogenic functionalized CuFe hybrid nanocomposites in boosting anticancer, antimicrobial and biosorption activities, Sci. Rep., 2021, 11: 7790
  47. Parameswaran, S., Bakkiyaraj, R., Shanmugam, P., Boonyuen, S., Venugopal, T., Investigation of biological efficacy assessment of cobalt-doped cerium oxide nanocomposites against pathogenic bacteria, fungi, and lung cancer cells, Mater. Chem. Phys., 2024, 321: 129496
  48. Hasanin, M.S., Hashem, A.H., Al-Askar, A.A., Haponiuk, J., Saied, E., A novel nanocomposite based on mycosynthesized bimetallic zinc-copperoxide nanoparticles, nanocellulose and chitosan: characterization, antimicrobial and photocatalytic activities, Electron. J. Biotechnol., 2023, 65: 45–55
  49. Raghupathi, K.R., Koodali, R.T., Manna, A.C., Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles, Langmuir, 2011, 27: 4020–4028
  50. He, G., Li, H., Zhao, Z., Liu, Q., Yu, J., Ji, Z., et al., Antifouling coatings based on the synergistic action of biogenic antimicrobial agents and low surface energy silicone resins and their application to marine aquaculture nets, Prog. Org. Coat., 2024, 195: 108656
  51. Almessiere, M.A., Slimani, Y., Rehman, S., Khan, F.A., Güngüneş, ÇD, Güner, S., et al., Magnetic properties, anticancer and antibacterial effectiveness of sonochemically produced Ce3+/Dy3+ co-activated Mn-Zn nanospinel ferrites, Arab. J. Chem., 2020, 13: 7403–7417
  52. Ansari, M.A., Albetran, H.M., Alheshibri, M.H., Timoumi, A., Algarou, N.A., Akhtar, S., et al., Synthesis of electrospun TiO2 nanofibers and characterization of their antibacterial and antibiofilm potential against gram-positive and gram-negative bacteria, Antibiotics, 2020, 9: 572
  53. Zhang, L., Shi, H., Tan, X., Jiang, Z., Wang, P., Qin, J., Ten-gram-scale mechanochemical synthesis of ternary lanthanum coordination polymers for antibacterial and antitumor activities, Front. Chem., 2022, 10: 898324
  54. El-Moslamy, S.H., Elnouby, M.S., Rezk, A.H., El-Fakharany, E.M., Scaling-up strategies for controllable biosynthetic ZnO NPs using cell free-extract of endophytic Streptomyces albus: characterization, statistical optimization, and biomedical activities evaluation, Sci. Rep., 2023, 13: 3200
DOI: https://doi.org/10.2478/msp-2024-0035 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 100 - 110
Submitted on: Jun 12, 2024
|
Accepted on: Sep 19, 2024
|
Published on: Nov 8, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Mohamed Elnouby, Marwa Nabil, Abdulaziz A. Al-Askar, Przemysław Kowalczewski, Said Behiry, Ahmed Abdelkhalek, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.