References
- Yinshan X, Jianqiang Z, Sujing J. Early strength evolution of cement grouts adopted in reinforced concrete subjected to Na2SO4 corrosion. Buildings. 2023;13:579. doi: 10.3390/buildings13030579
- Zuquan J, Xia Z, Tiejun Z, Ying L, Hou B. Effect of Ca(OH)2, NaCl, and Na2SO4 on the corrosion and electrochemical behavior of rebar. Chin J Oceanol Limn. 2017;35(3):681–92. doi: 10.1007/s00343-017-5319-y
- Ortega JM, Esteban MD, Rodriguez RR, Pastor JL, Ibanco FJ, Sanchez I, Climent MA. Long-term behavior of fly ash and slag cement grouts for micropiles exposed to a sulphate aggressive medium. Materials, 2017;10:598. doi: 10.3390/ma10060598
- Liu K, Deng M, Mo L, Tang J. Deterioration mechanism of Portland cement paste subjected to sodium sulfate attack. Adv Cem Res. 2015;27(8):477–86. doi: 10.1680/jadcr.14.00051
- Mujah D. Compressive strength and chloride resistance of grout containing ground palm oil fuel ash. J Clean Prod. 2016;112:712–22. doi: 10.1016/j.jclepro.2015.07.066
- Yuyou Y, Zengdi C, Xiangqian L, Haijun D. Development and materials characteristics of fly ash-slagbased grout for use in sulfate-rich environments. Clean Technol Envir. 2016;18:949–56. doi: 10.1007/s10098-015-1040-8
- Yu Z, Yang L, Zhou S, Gong Q, Zhu H. Durability of cement-sodium silicate grouts with a high water to binder ratio in marine environments. Constr Build Mater. 2018;189:550–9. doi: 10.1016/j.conbuildmat. 2018.09.040
- Sha Fei, Fan Guoxi. Durability of a novel effective microfine cementitious grouting material in corrosion environments. Constr Build Mater. 2021;306:124842. doi: 10.1016/j.conbuildmat.2021.124842
- Sang GC, Liu JP. Study of properties of Portland and aluminate cementitious composited grouting materials. Mater Res Innov. 2010;14(3):200–5. doi: 10.1179/143307510X12719005364387
- Samanbar P, Kingsley L. Corrosion of galvanized steel in alkaline solution associated with sulfate and chloride ions. Constr Build Mater. 2023;392:131889. doi: 10.1016/j.conbuildmat.2023.131889
- Najjar MF, Nehdi ML, Soliman AM, Azabi T. Damage mechanisms of two-stage concrete exposed to chemical and physical sulfate attack. Constr Build Mater. 2017;137:141–52. doi: 10.1016/j.conbuildmat.2017.01. 112
- Yuguo Y, Zhang YX. Numerical modelling of mechanical deterioration of cement mortar under external sulfate attack. Constr Build Mater. 2018;158:490–502. doi: 10.1016/j.conbuildmat.2017.10.048
- Hime WG, Mather B. “Sulfate attack,” or is it?. Cem Concr Res. 1999;29(5):789–91. doi: 10.1016/S0008-8846(99)00068-X
- Nguyen VH, Colina H, Torrenti JM, Boulay C, Nedjar B. Chemo-mechanical coupling behaviour of leached concrete: Part I: Experimental results. Nucl Eng Des. 2007;237(20–21):2083–9. doi: 10.1016/j.nucengdes.2007.02.013
- Kurumisawa K, Haga K, Hayashi D, Owada H. Effects of calcium leaching on diffusion properties of hardened and altered cement pastes. Phys Chem Earth. Parts A/B/C. 2017;99:175–83. doi: 10.1016/j.pce.2017. 03.007
- Alharbi YR, Abadel AA, Mayhoub OA, Kohail M. Effect of using available metakaoline and nano materials on the behavior of reactive powder concrete. Constr Build Mater. 2021;269:121344. doi: 10.1016/j.conbuildmat.2020.121344
- Abadel Aref A, Alghamdi H, Alharbi YR, Alamri M, Khawaji M, et al.. Investigation of alkali-activated slag-based composite incorporating dehydrated cement powder and red mud. Materials, 2023;16:1551. doi: 10.3390/ma16041551
- Gamal Heba A, El-Feky MS, Alharbi YR, Abadel AA, Kohail M.. Enhancement of concrete durability with hybrid nano materials. Sustainability. 2021;13:1373. doi: 10.3390/su13031373
- Cheng Y, Wei A, Scrivener K. Mechanism of expansion of mortars immersed in sodium sulfate solutions. Cem Concr Res. 2013;43:105–11. doi: 10.1016/j.cemconres. 2012.10.001
- Cheng Y, Wei S, Scrivener K. Application of image analysis based on SEM and chemical mapping on PC mortar under sulfate attack. J Wuhan Univ Technol (Mater Sci Ed). 2014;29(3):534–9. doi: 10.1007/s11595-014-0 953-0
- Pastor JL, Ortega JM, Climent MA, Sanchez I. Skin friction coefficient change on cement grouts for micropiles due to sulfate attack. Constr Build Mater. 2018;163:80–6. doi: 10.1016/j.conbuildmat.2017.12.091
- Permeh S, Lau K, Tansel B. Moisture and ion mobilization and stratification in post-tensioned (PT) grout during hydration. Case Stud Constr Mater 2021;15:e00644. doi: 10.1016/j.cscm.2021.e00644.
- Ortega Álvarez JM, Esteban Pérez MD, Rodrídguez Escribano RR, Pastor Navarro JL. Microstructural effects of sulphate attack in sustainable grouts for micropiles. Materials. 2016;9:905. doi: 10.3390/ma9110905
- Rusati PK, Song KI. Magnesium chloride and sulfate attacks on gravel-sand-cement-inorganic binder mixture. Constr Build Mater. 2018;187:565–71. doi: 10.1016/j.conbuildmat.2018.07.149
- Ortega Alvarez JM, Esteban MD, Rodríguez RR Pastor JL, Ibanco FJ, et al. Influence of silica fume addition in the long-term performance of sustainable cement grouts for micropiles exposed to a sulphate aggressive medium. Materials. 2017;10:890. doi: 10.3390/ma10080890
- Chindaprasirt P, Sriopas B, Phosri P, Yoddumrong P, Anantakam K, Kroehong W. Hybrid high calcium fly ash alkali-activated repair material for concrete exposed to sulfate environment. J Build Eng. 2022;45:103590. doi: 10.1016/j.jobe.2021.103590
- LI S, Chao W, Li W, Cheng J, Yuan B. Study on the effect of nanosilica suspension on the properties of cement-based grouts. Mater Sci Pol. 2022;40(4):171–82. doi: 10.2478/msp-2022-0054
- Kaiwei L, Daosheng S, Aiguo W, et al. Mechanical strength and microstructure of grouting materials with long-term immersion in sodium sulfate solution. Chin J Mater Sci Eng. 2018;36(3):403–8. doi: 10.14136/j.cnki.issn1673-2812.2018.03.011
- Diab AM, Elyamany HE, Elmoaty-Abd Elmoaty MAbd, Sreh MM. Effect of nanomaterials additives on performance of concrete resistance against magnesium sulfate and acids. Constr Build Mater. 2019;210:210–31. doi: 10.1016/j.conbuildmat.2019.03.099
- ossein S, Taherinezhad AF. Chloride ion permeability improvement of recycled aggregate concrete using pretreated recycled aggregates by silica fume slurry. Constr Build Mater. 2021;270:121498. doi: 10.1016/j.conbuildmat.2020.121498
- Sun J, Shi Z, Dai J, Song X, Hou G. Early hydration properties of Portland cement with labsynthetic calcined stöber nano-SiO2 particles as modifier. Cem Concr Compos. 2022;132:104622. doi: 10. 1016/j.cemconcomp.2022.104622
- Silva YF, Delvasto S. Sulfate attack resistance of self-compacting concrete with residue of masonry. Constr Build Mater. 2021, 268: 121095. doi: 10.1016/j.conbuildmat.2020.121095
- Ma Huizhu, Deng Min, Zhu Jianqiang. Ettringite recrystallization in concrete. Mater Rep. 2007;21:353–5. doi. 10.3321/j.issn:1005-023X.2007.z1.107
- Baoguo M, Xiaojian G, Zhongtao L. Effects of mineral admixtures on thaumasite form of sulfate attack of cement mortars. Chin J Mater Sci Eng. 2006;24(2):230–4. doi: 10.3969/j.issn.1673-2812.2006.02.016
- Cefis N, Comi C. Chemo-mechanical modelling of the external sulfate attack in concrete. Cem Concr Res. 2017;93:57–70. doi: 10.1016/j.cemconres.2016.12.003
- Feng P, Chang H, Liu X, Ye S, Shu X, Ran Q. The significance of dispersion of nano-SiO2 on early hydration of cement pastes [J]. Mater Des. 2020;186:108320. doi: 10.1016/j.matdes.2019.108320
- Liu H, Li Q, Ni S, Wang L, Guo Y. Effect of nano-silica dispersed at different temperatures on the properties of cement-based materials. J Build Eng. 2022;46:103750. doi: 10.1016/j.jobe.2021.103750
- Sargam Y, Wang K, Tsyrenova A, Liu F, Jiang S. Effects of anionic and nonionic surfactants on the dispersion and stability of nanoSiO2 in aqueous and cement pore solutions [J]. Cem Concr Res. 2021;144:106417. doi: 10.1016/j.cemconres.2021.106417
- Lavergne F, Belhadi R, Carriat J, Fraj AB. Effect of nano-silica particles on the hydration, the rheology and the strength development of a blended cement paste [J]. Cem Concr Compos. 2019;95:42–55. doi: 10.1016/j.cemconcomp.2018.10.007
- Rupasinghe M, San Nicolas R, Mendis P, Sofi M. Investigation of strength and hydration characteristics in nano-silica incorporated cement paste [J]. Cem Concr Compos. 2017;80:17–30. doi: 10.1016/j.cemconcomp.2017.02.011