Have a personal or library account? Click to login
The influence of nano-SiO2 emulsion on sulfate resistance of cement-based grouts Cover

The influence of nano-SiO2 emulsion on sulfate resistance of cement-based grouts

Open Access
|May 2024

References

  1. Yinshan X, Jianqiang Z, Sujing J. Early strength evolution of cement grouts adopted in reinforced concrete subjected to Na2SO4 corrosion. Buildings. 2023;13:579. doi: 10.3390/buildings13030579
  2. Zuquan J, Xia Z, Tiejun Z, Ying L, Hou B. Effect of Ca(OH)2, NaCl, and Na2SO4 on the corrosion and electrochemical behavior of rebar. Chin J Oceanol Limn. 2017;35(3):681–92. doi: 10.1007/s00343-017-5319-y
  3. Ortega JM, Esteban MD, Rodriguez RR, Pastor JL, Ibanco FJ, Sanchez I, Climent MA. Long-term behavior of fly ash and slag cement grouts for micropiles exposed to a sulphate aggressive medium. Materials, 2017;10:598. doi: 10.3390/ma10060598
  4. Liu K, Deng M, Mo L, Tang J. Deterioration mechanism of Portland cement paste subjected to sodium sulfate attack. Adv Cem Res. 2015;27(8):477–86. doi: 10.1680/jadcr.14.00051
  5. Mujah D. Compressive strength and chloride resistance of grout containing ground palm oil fuel ash. J Clean Prod. 2016;112:712–22. doi: 10.1016/j.jclepro.2015.07.066
  6. Yuyou Y, Zengdi C, Xiangqian L, Haijun D. Development and materials characteristics of fly ash-slagbased grout for use in sulfate-rich environments. Clean Technol Envir. 2016;18:949–56. doi: 10.1007/s10098-015-1040-8
  7. Yu Z, Yang L, Zhou S, Gong Q, Zhu H. Durability of cement-sodium silicate grouts with a high water to binder ratio in marine environments. Constr Build Mater. 2018;189:550–9. doi: 10.1016/j.conbuildmat. 2018.09.040
  8. Sha Fei, Fan Guoxi. Durability of a novel effective microfine cementitious grouting material in corrosion environments. Constr Build Mater. 2021;306:124842. doi: 10.1016/j.conbuildmat.2021.124842
  9. Sang GC, Liu JP. Study of properties of Portland and aluminate cementitious composited grouting materials. Mater Res Innov. 2010;14(3):200–5. doi: 10.1179/143307510X12719005364387
  10. Samanbar P, Kingsley L. Corrosion of galvanized steel in alkaline solution associated with sulfate and chloride ions. Constr Build Mater. 2023;392:131889. doi: 10.1016/j.conbuildmat.2023.131889
  11. Najjar MF, Nehdi ML, Soliman AM, Azabi T. Damage mechanisms of two-stage concrete exposed to chemical and physical sulfate attack. Constr Build Mater. 2017;137:141–52. doi: 10.1016/j.conbuildmat.2017.01. 112
  12. Yuguo Y, Zhang YX. Numerical modelling of mechanical deterioration of cement mortar under external sulfate attack. Constr Build Mater. 2018;158:490–502. doi: 10.1016/j.conbuildmat.2017.10.048
  13. Hime WG, Mather B. “Sulfate attack,” or is it?. Cem Concr Res. 1999;29(5):789–91. doi: 10.1016/S0008-8846(99)00068-X
  14. Nguyen VH, Colina H, Torrenti JM, Boulay C, Nedjar B. Chemo-mechanical coupling behaviour of leached concrete: Part I: Experimental results. Nucl Eng Des. 2007;237(20–21):2083–9. doi: 10.1016/j.nucengdes.2007.02.013
  15. Kurumisawa K, Haga K, Hayashi D, Owada H. Effects of calcium leaching on diffusion properties of hardened and altered cement pastes. Phys Chem Earth. Parts A/B/C. 2017;99:175–83. doi: 10.1016/j.pce.2017. 03.007
  16. Alharbi YR, Abadel AA, Mayhoub OA, Kohail M. Effect of using available metakaoline and nano materials on the behavior of reactive powder concrete. Constr Build Mater. 2021;269:121344. doi: 10.1016/j.conbuildmat.2020.121344
  17. Abadel Aref A, Alghamdi H, Alharbi YR, Alamri M, Khawaji M, et al.. Investigation of alkali-activated slag-based composite incorporating dehydrated cement powder and red mud. Materials, 2023;16:1551. doi: 10.3390/ma16041551
  18. Gamal Heba A, El-Feky MS, Alharbi YR, Abadel AA, Kohail M.. Enhancement of concrete durability with hybrid nano materials. Sustainability. 2021;13:1373. doi: 10.3390/su13031373
  19. Cheng Y, Wei A, Scrivener K. Mechanism of expansion of mortars immersed in sodium sulfate solutions. Cem Concr Res. 2013;43:105–11. doi: 10.1016/j.cemconres. 2012.10.001
  20. Cheng Y, Wei S, Scrivener K. Application of image analysis based on SEM and chemical mapping on PC mortar under sulfate attack. J Wuhan Univ Technol (Mater Sci Ed). 2014;29(3):534–9. doi: 10.1007/s11595-014-0 953-0
  21. Pastor JL, Ortega JM, Climent MA, Sanchez I. Skin friction coefficient change on cement grouts for micropiles due to sulfate attack. Constr Build Mater. 2018;163:80–6. doi: 10.1016/j.conbuildmat.2017.12.091
  22. Permeh S, Lau K, Tansel B. Moisture and ion mobilization and stratification in post-tensioned (PT) grout during hydration. Case Stud Constr Mater 2021;15:e00644. doi: 10.1016/j.cscm.2021.e00644.
  23. Ortega Álvarez JM, Esteban Pérez MD, Rodrídguez Escribano RR, Pastor Navarro JL. Microstructural effects of sulphate attack in sustainable grouts for micropiles. Materials. 2016;9:905. doi: 10.3390/ma9110905
  24. Rusati PK, Song KI. Magnesium chloride and sulfate attacks on gravel-sand-cement-inorganic binder mixture. Constr Build Mater. 2018;187:565–71. doi: 10.1016/j.conbuildmat.2018.07.149
  25. Ortega Alvarez JM, Esteban MD, Rodríguez RR Pastor JL, Ibanco FJ, et al. Influence of silica fume addition in the long-term performance of sustainable cement grouts for micropiles exposed to a sulphate aggressive medium. Materials. 2017;10:890. doi: 10.3390/ma10080890
  26. Chindaprasirt P, Sriopas B, Phosri P, Yoddumrong P, Anantakam K, Kroehong W. Hybrid high calcium fly ash alkali-activated repair material for concrete exposed to sulfate environment. J Build Eng. 2022;45:103590. doi: 10.1016/j.jobe.2021.103590
  27. LI S, Chao W, Li W, Cheng J, Yuan B. Study on the effect of nanosilica suspension on the properties of cement-based grouts. Mater Sci Pol. 2022;40(4):171–82. doi: 10.2478/msp-2022-0054
  28. Kaiwei L, Daosheng S, Aiguo W, et al. Mechanical strength and microstructure of grouting materials with long-term immersion in sodium sulfate solution. Chin J Mater Sci Eng. 2018;36(3):403–8. doi: 10.14136/j.cnki.issn1673-2812.2018.03.011
  29. Diab AM, Elyamany HE, Elmoaty-Abd Elmoaty MAbd, Sreh MM. Effect of nanomaterials additives on performance of concrete resistance against magnesium sulfate and acids. Constr Build Mater. 2019;210:210–31. doi: 10.1016/j.conbuildmat.2019.03.099
  30. ossein S, Taherinezhad AF. Chloride ion permeability improvement of recycled aggregate concrete using pretreated recycled aggregates by silica fume slurry. Constr Build Mater. 2021;270:121498. doi: 10.1016/j.conbuildmat.2020.121498
  31. Sun J, Shi Z, Dai J, Song X, Hou G. Early hydration properties of Portland cement with labsynthetic calcined stöber nano-SiO2 particles as modifier. Cem Concr Compos. 2022;132:104622. doi: 10. 1016/j.cemconcomp.2022.104622
  32. Silva YF, Delvasto S. Sulfate attack resistance of self-compacting concrete with residue of masonry. Constr Build Mater. 2021, 268: 121095. doi: 10.1016/j.conbuildmat.2020.121095
  33. Ma Huizhu, Deng Min, Zhu Jianqiang. Ettringite recrystallization in concrete. Mater Rep. 2007;21:353–5. doi. 10.3321/j.issn:1005-023X.2007.z1.107
  34. Baoguo M, Xiaojian G, Zhongtao L. Effects of mineral admixtures on thaumasite form of sulfate attack of cement mortars. Chin J Mater Sci Eng. 2006;24(2):230–4. doi: 10.3969/j.issn.1673-2812.2006.02.016
  35. Cefis N, Comi C. Chemo-mechanical modelling of the external sulfate attack in concrete. Cem Concr Res. 2017;93:57–70. doi: 10.1016/j.cemconres.2016.12.003
  36. Feng P, Chang H, Liu X, Ye S, Shu X, Ran Q. The significance of dispersion of nano-SiO2 on early hydration of cement pastes [J]. Mater Des. 2020;186:108320. doi: 10.1016/j.matdes.2019.108320
  37. Liu H, Li Q, Ni S, Wang L, Guo Y. Effect of nano-silica dispersed at different temperatures on the properties of cement-based materials. J Build Eng. 2022;46:103750. doi: 10.1016/j.jobe.2021.103750
  38. Sargam Y, Wang K, Tsyrenova A, Liu F, Jiang S. Effects of anionic and nonionic surfactants on the dispersion and stability of nanoSiO2 in aqueous and cement pore solutions [J]. Cem Concr Res. 2021;144:106417. doi: 10.1016/j.cemconres.2021.106417
  39. Lavergne F, Belhadi R, Carriat J, Fraj AB. Effect of nano-silica particles on the hydration, the rheology and the strength development of a blended cement paste [J]. Cem Concr Compos. 2019;95:42–55. doi: 10.1016/j.cemconcomp.2018.10.007
  40. Rupasinghe M, San Nicolas R, Mendis P, Sofi M. Investigation of strength and hydration characteristics in nano-silica incorporated cement paste [J]. Cem Concr Compos. 2017;80:17–30. doi: 10.1016/j.cemconcomp.2017.02.011
DOI: https://doi.org/10.2478/msp-2024-0010 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 116 - 125
Submitted on: Jan 1, 2024
|
Accepted on: Mar 9, 2024
|
Published on: May 22, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Shuiping Li, Bin Yuan, Jian Cheng, Xiaocheng Yu, Chao Wei, Qisheng Wu, Youchao Zhang, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.