References
- Adams, R. (2004) Intelligent advertising. AI & Soc 18, 68-81. https://doi.org/10.1007/s00146-003-0259-9.
- Aguilar, J., & Garcia, G. (2017). An adaptive intelligent management system of advertising for social networks: A case study of Facebook. IEEE Transactions on Computational Social Systems, 5(1), 20-32.
- Alvino, L., Pavone, L., Abhishta, A., & Robben, H. (2020). Picking your brains: Where and how neuroscience tools can enhance marketing research. Frontiers in Neuroscience, 14, 577666. https://doi.org/10.3389/fnins.2020.577666.
- Anagnostopoulos, A., Broder, A. Z., Gabrilovich, E., Josifovski, V., & Riedel, L. (2011). Web page summarization for just-in-time contextual advertising. ACM Transactions on Intelligent Systems and Technology (TIST), 3(1), 1-32. https://doi.org/10.1145/1321440.1321488.
- Astolfi, L., Fallani, F. D. V., Cincotti, F., Mattia, D., Bianchi, L., Marciani, M. G., ... & Babiloni, F. (2008). Neural basis for brain responses to TV commercials: a high-resolution EEG study. IEEE Transactions on neural systems and rehabilitation engineering, 16(6), 522-531.
- Ausin-Azofra, J. M., Bigne, E., Ruiz, C., Marín-Morales, J., Guixeres, J., & Alcañiz, M. (2021). Do you see what i see? Effectiveness of 360-Degree vs. 2D video ads using a neuroscience approach. Frontiers in Psychology, 12, 612717. https://doi.org/10.3389/fpsyg.2021.612717.
- Bae, S. M., Park, S. C., & Ha, S. H. (2003). Fuzzy web ad selector based on web usage mining. IEEE intelligent Systems, 18(6), 62-69. https://doi.org/10.1109/MIS.2003.1249171.
- Baker, M. J. (Ed.). (2001). Marketing: critical perspectives on business and management (Vol. 2). Taylor & Francis.
- Bauer, C. (2014). A framework for conceptualizing context for intelligent systems (CCFIS). Journal of Ambient Intelligence and Smart Environments, 6(4), 403-417. https://doi.org/10.3233/AIS-140269.
- Bauer, C., & Novotny, A. (2017). A consolidated view of context for intelligent systems. Journal of Ambient Intelligence and Smart Environments, 9(4), 377-393. https://doi.org/10.3233/AIS-170445.
- Başev, S. E. (2024). The role of artificial intelligence (AI) in the future of the advertising industry : Aplications and examples of AI in advertising. International Journal of Education Technology and Scientific Researches, 9(26), 167-183.
- Gao, B., Wang, Y., Xie, H., Hu, Y., & Hu, Y. (2023). Artificial Intelligence in Advertising: Advancements, challenges, and ethical considerations in targeting, personalization, content creation, and ad optimization. SAGE Open, 13(4), 21582440231210759.
- Boerman, S. C., Kruikemeier, S., & Zuiderveen Borgesius, F. J. (2017). Online behavioral advertising: A literature review and research agenda. Journal of advertising, 46(3), 363-376. https://doi.org/10.1080/00913367.2017.1339368.
- Broder, A. (2011). Highly dimensional problems in computational advertising. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2011, Athens, Greece, September 5-9, 2011. Proceedings, Part I 22 (pp. 5-5). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-23780-5_4.
- Camerer, C., & Yoon, C. (2015). Introduction to the journal of marketing research special issue on neuroscience and marketing. Journal of Marketing Research, 52(4), 423-426. https://doi.org/10.1509/0022-2437-52.4.4.
- Casillas, J., & López, F. J. M. (Eds.). (2010). Marketing intelligent systems using soft computing: Managerial and research applications.
- Chapelle, O., Manavoglu, E., & Rosales, R. (2014). Simple and scalable response prediction for display advertising. ACM Transactions on Intelligent Systems and Technology (TIST), 5(4), 1-34. https://doi.org/10.1145/2532128.
- Cherubino, P., Martinez-Levy, A. C., Caratu, M., Cartocci, G., Di Flumeri, G., Modica, E., ... & Trettel, A. (2019). Consumer behaviour through the eyes of neurophysiological measures: State-of-the-art and future trends. Computational intelligence and neuroscience, 2019. https://doi.org/10.1155/2019/1976847.
- Chu, S. C., Yim, M. Y. C., & Mundel, J. (2024). Artificial intelligence, virtual and augmented reality, social media, online reviews, and influencers: a review of how service businesses use promotional devices and future research directions. International Journal of Advertising, 1-31. https://doi.org/10.1080/02650487.2024.2325835.
- Ciorciari, J., Pfeifer, J., & Gountas, J. (2019). An EEG study on emotional intelligence and advertising message effectiveness. Behavioral Sciences, 9(8), 88. https://doi.org/10.3390/bs9080088.
- Clark, K. R., Leslie, K. R., Garcia-Garcia, M., & Tullman, M. L. (2018). How advertisers can keep mobile users engaged and reduce video-ad blocking: best practices for video-ad placement and delivery based on consumer neuroscience measures. Journal of Advertising Research, 58(3), 311-325. https://doi.org/10.2501/JAR-2018-036.
- Dahlen, M., & Rosengren, S. (2016). If advertising won't die, what will it be? Toward a working definition of advertising. Journal of Advertising, 45(3), 334-345. https://doi.org/10.1080/00913367.2016.1172387.
- Dave, K., & Varma, V. (2014). Computational advertising: Techniques for targeting relevant ads. Foundations and Trends® in Information Retrieval, 8(4–5), 263-418.http://dx.doi.org/10.1561/1500000045.
- de Balanzó, C., & Sabaté, J. (2007). Neuroscience and advertising: The new frontier of persuasion. Tripods. Extra, ISSN 2339-6415, Vol. 2, No. Extra 2007 (IV International Conference on Communication and Reality), 2007 (Issue dedicated to: The crossroads of communication: limits and transgressions), pp. 909-924.
- Demirel, Ç., Tokuç, A. A., & Tekin, A. T. (2023). Click prediction boosting via Bayesian hyperparameter optimization-based ensemble learning pipelines. Intelligent Systems with Applications, 17, 200185. https://doi.org/10.1016/j.iswa.2023.200185.
- Diao, F., & Sundar, S. S. (2004). Orienting response and memory for web advertisements: Exploring effects of pop-up window and animation. Communication research, 31(5), 537-567. https://doi.org/10.1177/0093650204267932.
- Evans, C., Moore, P., & Thomas, A. (2012, July). An intelligent mobile advertising system (iMAS): Location-based advertising to individuals and business. In 2012 Sixth International Conference on Complex, Intelligent, and Software Intensive Systems (pp. 959-964). IEEE. https://doi.org/10.1109/CISIS.2012.24.
- Fortunato, V. C. R., Giraldi, J. D. M. E., & de Oliveira, J. H. C. (2014). A review of studies on neuromarketing: Practical results, techniques, contributions and limitations. Journal of Management Research, 6(2), 201. : http://dx.doi.org/10.5296/jmr.v6i2.5446.
- Fugate, D.L. (2007), "Neuromarketing: a layman's look at neuroscience and its potential application to marketing practice", Journal of Consumer Marketing, Vol. 24 No. 7, pp. 385-394. https://doi.org/10.1108/07363760710834807.
- Fulgoni, G. M. (2016). Fraud in digital advertising: A multibillion-dollar black hole: How marketers can minimize losses caused by bogus web traffic. Journal of Advertising Research, 56(2), 122-125.
- Gala, P., & Gligor, D. (2022). Review of neuroscience in marketing: areas, emotions and tools. International Journal of Business Innovation and Research, 27(1), 76-100. https://doi.org/10.1504/IJBIR.2022.120403.
- Guixeres, J., Bigné, E., Ausin Azofra, J. M., Alcaniz Raya, M., Colomer Granero, A., Fuentes Hurtado, F., & Naranjo Ornedo, V. (2017). Consumer neuroscience-based metrics predict recall, liking and viewing rates in online advertising. Frontiers in psychology, 8, 1808. https://doi.org/10.3389/fpsyg.2017.01808.
- Gough, D., Thomas, J., & Oliver, S. (2017). An introduction to systematic reviews.
- Guo, J., Mei, T., Liu, F., & Hua, X. S. (2009, July). AdOn: an intelligent overlay video advertising system. In Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval (pp. 628-629).
- Guo, S., Jin, Z., Sun, F., Li, J., Li, Z., Shi, Y., & Cao, N. (2021, May). Vinci: an intelligent graphic design system for generating advertising posters. In Proceedings of the 2021 CHI conference on human factors in computing systems (pp. 1-17). https://doi.org/10.1145/3411764.3445117.
- Guo, C. (2022). Intelligent Voice System Design for Optimizing E-Business Advertising Rhetoric Based on SVM Algorithm. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/1944275.
- Ha, S.H. (2004). An Intelligent System for Personalized Advertising on the Internet. In: Bauknecht, K., Bichler, M., Pröll, B. (eds) E-Commerce and Web Technologies. EC-Web 2004. Lecture Notes in Computer Science, vol 3182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30077-9_3.
- Hamelin, N., El Moujahid, O., & Thaichon, P. (2017). Emotion and advertising effectiveness: A novel facial expression analysis approach. Journal of Retailing and Consumer Services, 36, 103-111. https://doi.org/10.1016/j.jretconser.2017.01.001.
- Harris, J. M., Ciorciari, J., & Gountas, J. (2018). Consumer neuroscience for marketing researchers. Journal of consumer behaviour, 17(3), 239-252. https://doi.org/10.1002/cb.1710.
- Helberger, N., Huh, J., Milne, G., Strycharz, J., & Sundaram, H. (2020). Macro and exogenous factors in computational advertising: Key issues and new research directions. Journal of Advertising, 49(4), 377-393. https://doi.org/10.1080/00913367.2020.1811179.
- Huh, J., & Malthouse, E. C. (2020). Advancing computational advertising: Conceptualization of the field and future directions. Journal of Advertising, 49(4), 367-376. https://doi.org/10.1080/00913367.2020.1795759.
- Jahanbakhsh, K. (2020). Applying multi-armed bandit algorithms to computational advertising. arXiv preprint arXiv:2011.10919. https://doi.org/10.48550/arXiv.2011.10919.
- Khalil, G. A., Qutp, M. M., & Nada, M. A. (2023). Intelligent Billboards Targeted Advertising Systems. Journal of Art, Design and Music, 2(2), 5. https://doi.org/10.55554/2785-9649.1020.
- Kietzmann, J., Paschen, J., & Treen, E. (2018). Artificial intelligence in advertising: How marketers can leverage artificial intelligence along the consumer journey. Journal of Advertising Research, 58(3), 263-267. https://doi.org/10.2501/JAR-2018-035.
- Kushal Dave & Vasudeva Varma (2014), "Computational Advertising: Techniques for Targeting Relevant Ads", Foundations and Trends® in Information Retrieval: Vol. 8: No. 4-5, pp 263-418. http://dx.doi.org/10.1561/1500000045.
- Lewinski, P., Fransen, M. L., & Tan, E. S. H. (2014). Predicting advertising effectiveness by facial expressions in response to amusing persuasive stimuli. Journal of Neuroscience, Psychology, and Economics, 7(1), 1–14. https://doi.org/10.1037/npe0000012.
- Leszczynski, G., Salamon, K., & Zieliński, M. (2022). Acceptance of artificial intelligence in advertising agencies. In Conference: 37th International Business-Information-Management Association Conference Cordoba (Vol. 1).
- Li, H. (2019). Special section introduction: Artificial intelligence and advertising. Journal of advertising, 48(4), 333-337. https://doi.org/10.1080/00913367.2019.1654947.
- Lim, W. M. (2018). Demystifying neuromarketing. Journal of business research, 91, 205-220. https://doi.org/10.1016/j.jbusres.2018.05.036.
- Liu, B. (2007). Web data mining: exploring hyperlinks, contents, and usage data (Vol. 1). Heidelberg: springer. https://doi.org/10.1007/978-3-642-19460-3.
- Liu, B. (2023). Based on intelligent advertising recommendation and abnormal advertising monitoring system in the field of machine learning. International Journal of Computer Science and Information Technology, 1(1), 17-23. https://doi.org/10.62051/ijcsit.v1n1.03.
- Nakagawa, T. (2011). The feasibility study of applied neuroscience for advertising and marketing research (Doctoral dissertation, Massachusetts Institute of Technology). https://dspace.mit.edu/handle/1721.1/65785.
- Nissenbaum, H., & Daniel, H. (2009). TrackMeNot: Resisting surveillance in web search.
- O’Connell, B., Walden, S., & Pohlmann, A. (2011). Marketing and neuroscience what drives customer decisions. In American Marketing Association (pp. 1-20). https://hoffmanmarcom.com/ama/white-papers/White%20Paper%20Neuroscience%20what%20drives%20cust%20descisions.pdf.
- Ohme, R., Reykowska, D., Wiener, D., & Choromanska, A. (2009). Analysis of neurophysiological reactions to advertising stimuli by means of EEG and galvanic skin response measures. Journal of Neuroscience, Psychology, and Economics, 2(1), 21. https://doi.org/10.1037/a0015462.
- Okoli, C. (2015). A guide to conducting a standalone systematic literature review. Communications of the Association for Information Systems, 37. https://doi.org/10.17705/1CAIS.03743.
- Page, G., & Raymond, J. (2006). Cognitive Neuroscience, Marketing and Research. In ESOMAR Congress, London. https://arf-research-dox.s3.amazonaws.com/Supplementary+Materials/Affectiva/cognitive-neuroscience-marketing-and-research.pdf.
- Pak, B. K., Mocan, B., Yoldaş, S. Y., & Baz, N. (2018, September). Development of Autonomous Intelligent System for Google Ads. In 2018 Thirteenth International Conference on Digital Information Management (ICDIM) (pp. 102-107). IEEE. https://doi.org/10.1109/ICDIM.2018.8847128.
- Pham, P., & Wang, J. (2019). Attentivevideo: A multimodal approach to quantify emotional responses to mobile advertisements. ACM Transactions on Interactive Intelligent Systems (TiiS), 9(2-3), 1-30. https://doi.org/10.1145/3232233.
- Piwowarski, M., Shankar Singh, U., & Nermend, K. (2019). The cognitive neuroscience methods in the analysis of the impact of advertisements in shaping people's health habits. https://www.um.edu.mt/library/oar/handle/123456789/49797
- Poh, H. L., Yao, J., & Jašic, T. (1998). Neural networks for the analysis and forecasting of advertising and promotion impact. Intelligent Systems in Accounting, Finance & Management, 7(4), 253-268. https://doi.org/10.1002/(SICI)1099-1174(199812)7:4<253::AID-ISAF150>3.0.CO;2-X.
- Precourt, G. (2015). How Does Neuroscience Work in Advertising?. Journal of Advertising Research, 55(2), 112-113. https://doi.org/10.2501/JAR-55-2-112-113.
- Qin, H., & Lei, J. (2019, September). The application of virtual reality technology in advertising communication. In 2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS) (pp. 73-76). IEEE. https://doi.org/10.1109/ICVRIS.2019.00027.
- Ramsøy, T. Z. (2019). Building a foundation for neuromarketing and consumer neuroscience research: How researchers can apply academic rigor to the neuroscientific study of advertising effects. Journal of Advertising Research, 59(3), 281-294. https://doi.org/10.2501/JAR-2019-034.
- Sánchez-Fernández, J., Casado-Aranda, L. A., & Bastidas-Manzano, A. B. (2021). Consumer neuroscience techniques in advertising research: A bibliometric citation analysis. Sustainability, 13(3), 1589. https://doi.org/10.3390/su13031589.
- Sestino, A., & De Mauro, A. (2022). Leveraging artificial intelligence in business: Implications, applications and methods. Technology Analysis & Strategic Management, 34(1), 16-29. https://doi.org/10.1080/09537325.2021.1883583.
- Silberstein, R. B., & Nield, G. E. (2008). Brain activity correlates of consumer brand choice shift associated with television advertising. International Journal of Advertising, 27(3), 359-380. https://doi.org/10.2501/S0265048708080025.
- Smidts, A., Hsu, M., Sanfey, A. G., Boksem, M. A., Ebstein, R. B., Huettel, S. A., ... & Yoon, C. (2014). Advancing consumer neuroscience. Marketing Letters, 25, 257-267. https://doi.org/10.1007/s11002-014-9306-1.
- Solnais, C., Andreu-Perez, J., Sánchez-Fernández, J., & Andréu-Abela, J. (2013). The contribution of neuroscience to consumer research: A conceptual framework and empirical review. Journal of economic psychology, 36, 68-81. https://doi.org/10.1016/j.joep.2013.02.011.
- Stevens, N. T. (2021). Modern Design of Experiments for Computational Advertising. https://www.birs.ca/workshops/2021/21w5508/files/Nathaniel%20Stevens/Modern_DOE_BIRS2021.pdf.
- Sun, D. (2022). Application of Traditional Culture in Intelligent Advertising Design System in the Internet Era. Scientific Programming, 2022. https://doi.org/10.1155/2022/7596991.
- Sung, B., Wilson, N. J., Yun, J. H., & Lee, E. J. (2020). What can neuroscience offer marketing research?. Asia Pacific Journal of Marketing and Logistics, 32(5), 1089-1111. https://doi.org/10.1108/APJML-04-2019-0227.
- Vakratsas, D., & Ambler, T. (1999). How advertising works: what do we really know?. Journal of marketing, 63(1), 26-43. https://doi.org/10.1177/0022242999063001.
- Valitutti, A., Strapparava, C., & Stock, O. (2008, March). Textual Affect Sensing for Computational Advertising. In AAAI Spring Symposium: Creative Intelligent Systems (pp. 117-122). https://cdn.aaai.org/Symposia/Spring/2008/SS-08-03/SS08-03-018.pdf.
- Van Noort, G., Himelboim, I., Martin, J., & Collinger, T. (2020). Introducing a model of automated brand-generated content in an era of computational advertising. Journal of Advertising, 49(4), 411-427. https://doi.org/10.1080/00913367.2020.1795954.
- Varan, D., Lang, A., Barwise, P., Weber, R., & Bellman, S. (2015). How Reliable Are Neuromarketers' Measures of Advertising Effectiveness?: Data from Ongoing Research Holds No Common Truth among Vendors. Journal of advertising research, 55(2), 176-191. https://doi.org/10.2501/JAR-55-2-176-191.
- Venkatraman, V., Clithero, J. A., Fitzsimons, G. J., & Huettel, S. A. (2012). New scanner data for brand marketers: How neuroscience can help better understand differences in brand preferences. Journal of consumer psychology, 22(1), 143-153. https://doi.org/10.1016/j.jcps.2011.11.008.
- Venkatraman, V., Dimoka, A., Pavlou, P. A., Vo, K., Hampton, W., Bollinger, B., ... & Winer, R. S. (2015). Predicting advertising success beyond traditional measures: New insights from neurophysiological methods and market response modeling. Journal of Marketing Research, 52(4), 436-452.
- Wang, Y. J., & Minor, M. S. (2008). Validity, reliability, and applicability of psychophysiological techniques in marketing research. Psychology & Marketing, 25(2), 197-232. https://doi.org/10.1002/mar.20206.
- Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a literature review. MIS quarterly, xiii-xxiii. https://www.jstor.org/stable/4132319.
- Xin, Q., He, Y., Pan, Y., Wang, Y., & Du, S. (2023). The implementation of an AI-driven advertising push system based on a NLP algorithm. International Journal of Computer Science and Information Technology, 1(1), 30-37. https://doi.org/10.62051/ijcsit.v1n1.05.
- Yang, Y., Yang, Y. C., Jansen, B. J., & Lalmas, M. (2017). Computational advertising: A paradigm shift for advertising and marketing?. IEEE Intelligent Systems, 32(3), 3-6. https://doi.org/10.1109/MIS.2017.58.
- Yang, X., Sun, D., Zhu, R., Deng, T., Guo, Z., Ding, Z., ... & Zhu, Y. (2019a). Aiads: Automated and intelligent advertising system for sponsored search. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 1881-1890). https://doi.org/10.1145/3292500.3330782.
- Yang, Y., Jansen, B. J., Yang, Y., Guo, X., & Zeng, D. (2019b). Keyword optimization in sponsored search advertising: A multilevel computational framework. IEEE Intelligent Systems, 34(1), 32-42. https://doi.org/10.1109/MIS.2019.2893590.
- Yun, J. T., Segijn, C. M., Pearson, S., Malthouse, E. C., Konstan, J. A., & Shankar, V. (2020). Challenges and future directions of computational advertising measurement systems. Journal of Advertising, 49(4), 446-458. https://doi.org/10.1080/00913367.2020.1795757.
- Zuboff, S. (2023). The age of surveillance capitalism. In Social theory re-wired (pp. 203-213). Routledge.