Have a personal or library account? Click to login
Tracking trace chemical alterations in biogenic apatite – improvements in tooth sample preparation for experimental approach Cover

Tracking trace chemical alterations in biogenic apatite – improvements in tooth sample preparation for experimental approach

Open Access
|Jan 2025

References

  1. Aljawad, M., Steuwer, A., Kilcoyne, S., Shore, R., Cywinski, R., & Wood, D. (2007). 2D mapping of texture and lattice parameters of dental enamel. Biomaterials, 28(18), 2908–2914. doi: 10.1016/j.biomaterials.2007.02.019
  2. Angker, L., Nockolds, C., Swain, M., & Kilpatrick, N. (2004). Quantitative analysis of the mineral content of sound and carious primary dentine using BSE imaging. Archives Of Oral Biology, 49(2), 99–107. doi: 10.1016/j.archoralbio.2003.08.006
  3. Beniash, E., Stifler, C. A., Sun, C.-Y., Jung, G. S., Qin, Z., Buehler, M. J., & Gilbert, P. U. P. A. (2019). The hidden structure of human enamel. Nature Communications, 10(1), 4383. doi: 10.1038/s41467-019-12185-7
  4. Branscombe, T., Lee-Thorp, J., Schulting, R., & Leng, M. (2022). Micromilling vs hand drilling in stable isotope analyses of incremental carbonates: The potential for δ13C contamination by embedding resin. Rapid Communications in Mass Spectrometry, 36(14), e9318. doi: 10.1002/rcm.9318
  5. Drouet, C. (2015). A comprehensive guide to experimental and predicted thermodynamic properties of phosphate apatite minerals in view of applicative purposes. The Journal of Chemical Thermodynamics, 81, 143–159. doi: 10.1016/j.jct.2014.09.012
  6. Drouet, C. (2019). Applied predictive thermodynamics (ThermAP). Part 2. Apatites containing Ni-2+, Co2+, Mn2+, or Fe2+ ions. Journal of Chemical Thermodynamics, 136, 182–189. doi: 10.1016/j.jct.2015.06.016
  7. Ghadimi, E., Eimar, H., Marelli, B., Nazhat, S. N., Asgharian, M., Vali, H., & Tamimi, F. (2013). Trace elements can influence the physical properties of tooth enamel. SpringerPlus, 2(1), 499. doi: 10.1186/2193-1801-2-499
  8. Guede, I., Zuluaga, M. C., Ortega, L. A., Alonso-Olazabal, A., Murelaga, X., Pina, M., & Gutierrez, F. J. (2017). Analyses of human dentine and tooth enamel by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to study the diet of medieval Muslim individuals from Tauste (Spain). Microchemical Journal, 130, 287–294. doi: 10.1016/j.microc.2016.10.005
  9. Hannig, M. (1999). Transmission electron microscopy of early plaque formation on dental materials in vivo. European Journal of Oral Sciences, 107(1), 55–64. doi: 10.1046/j.0909-8836.1999.eos107109.x
  10. Hellak, A. F., Riepe, E. M., Seubert, A., & Korbmacher-Steiner, H. M. (2015). Enamel demineralization after different methods of interproximal polishing. Clinical Oral Investigations, 19(8), 1965–1972. doi: 10.1007/s00784-015-1429-0
  11. Kidd, E. A. M., & Fejerskov, O. (2004). What Constitutes Dental Caries? Histopathology of Carious Enamel and Dentin Related to the Action of Cariogenic Biofilms. Journal of Dental Research, 83(1_suppl), 35–38. doi: 10.1177/154405910408301s07
  12. LeGeros, R. Z. (2008). Calcium phosphate-based osteoinductive materials. Chemical reviews. 108(11), 4742–4753. doi: 10.1021/cr800427g
  13. Pasero, M., Kampf, A. R., Ferraris, C., Pekov, I. V., Rakovan, J., & White, T. J. (2010). Nomenclature of the apatite supergroup minerals. European Journal of Mineralogy, 22(2), 163–179). doi: 10.1127/0935-1221/2010/0022-2022
  14. Ptáček, P. (2016). Apatites and their Synthetic Analogues—Synthesis, Structure, Properties and Applications. InTech. doi: 10.5772/59882
  15. Rosier, B., Marsh, P., & Mira, A. (2018). Resilience of the Oral Microbiota in Health: Mechanisms That Prevent Dysbiosis. Journal of Dental Research, 97, 371–380. doi: 10.1177/0022034517742139
  16. Sarna-Boś, K., Skic, K., Boguta, P., Adamczuk, A., Vodanovic, M., & Chałas, R. (2023). Elemental mapping of human teeth enamel, dentine and cementum in view of their microstructure. Micron, 172, 103485. doi: 10.1016/j.micron.2023.103485
  17. Shellis, R. (1996). A scanning electron-microscopic study of solubility variations in human enamel and dentine. Archives Of Oral Biology, 41(5), 473–484. doi: 10.1016/0003-9969(96)00140-9
  18. Ten Cate, J. M., Timmer, K., Shariati, M., & Featherstone, J. D. B. (1988). Effect of Timing of Fluoride Treatment on Enamel De- and Remineralization in vitro: A pH-Cycling Study. Caries Research, 22(1), 20–26. doi: 10.1159/000261078
  19. Topolska, J. M., Jagielska, A., Motyl, S., Kozub-Budzyń, G. A., Kępa, L., Wagner, B., & Wątor, K. (2024). Metal leakage from orthodontic appliances chemically alters enamel surface during experimental in vitro simulated treatment. Scientific Reports, 14(1), 5412. doi: 10.1038/s41598-024-56111-4
  20. Topolska, J. M., Kozub-Budzyń, G. A. (2024). “SEM and EDS data of exemplary ‘diamond’ drill.”, https://doi.org/10.18150/QFSZL3, RepOD
  21. Vitkov, L., Kastner, M., Kienberger, F., Hinterdorfer, P., Schilcher, K., Grunert, I., … Krautgartner, W. D. (2008). Correlations between AFM and SEM imaging of acid-etched tooth enamel. Ultrastructural Pathology, 32(1), 1–4. doi: 10.1080/01913120701808065
  22. White, T. J., & ZhiLi, D. (2003). Structural derivation and crystal chemistry of apatites. Acta Crystallographica Section B Structural Science, 59(1), 1–16. doi: 10.1107/S0108768102019894
DOI: https://doi.org/10.2478/mipo-2025-0001 | Journal eISSN: 1899-8526 | Journal ISSN: 1899-8291
Language: English
Page range: 1 - 3
Submitted on: Nov 17, 2024
Accepted on: Dec 9, 2024
Published on: Jan 20, 2025
Published by: Mineralogical Society of Poland
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Justyna M. Topolska, published by Mineralogical Society of Poland
This work is licensed under the Creative Commons Attribution 4.0 License.