Abu Quba, A.A., Goebel, M.O., Karagulyan, M., Miltner, A., Kästner, M., Bachmann, J., Schaumann, G.E., Diehl, D. (2023). Hypertonic stress induced changes of Pseudomonas fluorescens adhesion towards soil minerals studied by AFM. Scientific Reports, 13(1), 17146. https://doi.org/10.1038/s41598-023-44256-7
Alameen, M. B., Elraies, K. A., Almansour, A., Mohyaldinn, M. (2024). Experimental study of the silica dissolution onto sandstone formation: Influence of pH, salinity, and temperature on dissolution. Geoenergy Science and Engineering, 234, 212632. https://doi.org/10.1016/j.geoen.2024.212632
Ams, D.A., Maurice, P.A., Hersman, L.E., Forsythe, J.H. (2002). Siderophore production by an aerobic Pseudomonas mendocina bacterium in the presence of kaolinite. Chemical Geology, 188(3-4), 161-170. https://doi.org/10.1016/S0009-2541(02)00077-3
Bertani, G. (2004). Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. Journal of bacteriology, 186(3), 595-600. https://doi.org/10.1128/jb.186.3.595-600.2004
Blott, S.J., Pye, K. (2001). Gradistat: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes Landforms, 26(11), 1237-1248. https://doi.org/10.1002/esp.261
Bosch-Roig, P., Lustrato, G., Zanardini, E., Ranalli, G. (2015). Biocleaning of Cultural Heritage stone surfaces and frescoes: which delivery system can be the most appropriate?. Annals of Microbiology, 65, 1227-1241. 10.1007/s13213-014-0938-4
Bradley, S.M., Middleton, A.P. (1988). A study of the deterioration of Egyptian limestone sculpture. Journal of the American Institute for Conservation, 27(2), 64-86. https://doi.org/10.1179/019713688806046319
Cámara, B., de los Ríos, A., Urizal, M., de Buergo, M.Á., Varas, M.J., Fort, R., Ascaso, C. (2011). Characterizing the Microbial Colonization of a Dolostone Quarry: Implications for Stone Biodeterioration and Response to Biocide Treatments. Microbial Ecology, 62, 299-313. https://doi.org/10.1007/s00248-011-9815-x
Casey, W.H., Banfield, J.F., Westrich, H.R., McLaughlin, L. (1993). What do dissolution experiments tell us about natural weathering? Chemical Geology, 105(1-3), 1-15. https://doi.org/10.1016/0009-2541(93)90115-Y
Chen, X., Bai, F., Huang, J., Lu, Y., Wu, Y., Yu, J., Bai, S. (2021). The Organisms on Rock Cultural Heritages: Growth and Weathering. Geoheritage, 13(3), 56. https://doi.org/10.1007/s12371-021-00588-2
Cherblanc, F., Berthonneau, J., Bromblet, P., Huon, V. (2016). Influence of water content on the mechanical behaviour of limestone: Role of the clay minerals content. Rock Mechanics and Rock Engineering, 49, 2033-2042. https://doi.org/10.1007/s00603-015-0911-y
Chigira, M., Oyama, T. (2000). Mechanism and effect of chemical weathering of sedimentary rocks. Developments in Geotechnical Engineering, 84, 267278. https://doi.org/10.1016/S0013-7952(99)00102-7
Davis, K.J., Nealson, K.H., Lüttge, A. (2007). Calcite and dolomite dissolution rates in the context of microbemineral surface interactions. Geobiology, 5(2), 191-205. https://doi.org/10.1111/j.1472-4669.2007.00112.x
De Belie, N. (2010). Microorganisms versus stony materials: A love-hate relationship. Materials and Structures, 43, 1191-1202. https://doi.org/10.1617/s11527-010-9654-0
de la Torre, M.A., Gomez-Alarcon, G., Vizcaino, C., Garcia, T.T. (1992). Biochemical mechanisms of stone alteration carried out by filamentous fungi living in monuments. Biogeochemistry, 19, 129-147. https://doi.org/10.1007/BF00000875
El-Derby, A.A.O.D., Mansour, M.M.A., Salem, M.Z.M. (2016). Investigation the microbial deterioration of sandstone from the osirion’s sarcophagus chamber as affected by rising ground water level. Mediterranean Archaeology and Archaeometry, 16(1), 273-273 https://doi.org/10.5281/zenodo.46360
El-Gohary, M. (2015). Effective roles of some deterioration agents affecting edfu royal birth house “Mammisi. International Journal of Conservation Science, 6(3), 349-368.
El-Shayeb, H., El-Hemaly, I.A., Abdel Aal, E., Saleh, A., Khashaba, A., Odah, H., Mostafa, R. (2013). Magnetization of three Nubia Sandstone formations from Central Western Desert of Egypt. NRIAG Journal of Astronomy and Geophysics, 2(1), 77-87. https://doi.org/10.1016/j.nrjag.2013.06.011
Fletcher, M. (1985). Effect of Solid Surfaces on the Activity of Attached Bacteria, In Bacterial adhesion: mechanisms and physiological significance (pp. 339-362). Boston, MA: Springer US. https://doi.org/10.1007/978-1-4615-6514-7_12
Friolo, K.H., Stuart, B., Ray, A. (2003). Characterisation of weathering of Sydney sandstones in heritage buildings. Journal of Cultural Heritage, 4(3), 211-220. https://doi.org/10.1016/S1296-2074(03)00047-5
Ganeshan, G., Manoj Kumar, A. (2005). Pseudomonas fluorescens, a potential bacterial antagonist to control plant diseases. Journal of Plant Interactions, 1(3), 123-134. https://doi.org/10.1080/17429140600907043
Gong, Q., Deng, J., Han, M., Yang, L., Wang, W. (2012). Dissolution of sandstone powders in deionised water over the range 50–350C. Applied geochemistry, 27(12), 2463-2475. https://doi.org/10.1016/j.apgeochem.2012.08.011
Hua, W., Dong, S., Li, Y., Xu, J., Wang, Q. (2015). The influence of cyclic wetting and drying on the fracture toughness of sandstone. International Journal of Rock Mechanics and Mining Sciences, 78, 331-335. https://doi.org/10.1016/j.ijrmms.2015.06.010
Jaber, H., Maalouf, E., Yehya, A., Salah, M. K., Bou-Hamdan, K., Harb, M. (2024). The effect of temperature on the mechanical and hydraulic properties of sedimentary rocks. Geoenergy Science and Engineering, 235, 212702. https://doi.org/10.1016/j.geoen.2024.212702
Jage, C. R., Zipper, C. E., Noble, R. (2001). Factors affecting alkalinity generation by successive alkalinity-producing systems: Regression analysis. Journal of environmental Quality, 30(3), 1015-1022. https://doi.org/10.2134/jeq2001.3031015x
Jones, A.A., Bennett, P.C. (2014). Mineral Microniches Control the Diversity of Subsurface Microbial Populations. Geomicrobiology Journal, 31(3), 246-261. https://doi.org/10.1080/01490451.2013.809174
Jroundi, F., Elert, K., Ruiz-Agudo, E., Gonzalez-Muñoz, M. T., Rodriguez-Navarro, C. (2020). Bacterial diversity evolution in maya plaster and stone following a bioconservation treatment. Frontiers in Microbiology, 11, 599144. 10.3389/fmicb.2020.599144
Jroundi, F., Fernández-Vivas, A., Rodriguez-Navarro, C., Bedmar, E. J., González-Muñoz, M. T. (2010). Bioconservation of deteriorated monumental calcarenite stone and identification of bacteria with carbonatogenic activity. Microbial ecology, 60, 39-54. DOI 10.1007/s00248-010-9665-y
Kalinowski, B.E., Liermann, L.J., Givens, S., Brantley, S.L. (2000). Rates of bacteria-promoted solubilization of Fe from minerals: A review of problems and approaches, in: Chemical Geology, 169(3-4), 357-370. https://doi.org/10.1016/S0009-2541(00)00214-X
Karlshausen, C., De Putter, T. (2020). From Limestone to Sandstone – Building Stone of Theban Architecture During the Reigns of Hatshepsut and Thutmosis III. J. The Journal of Egyptian Archaeology, 106(1-2), 215-227. https://doi.org/10.1177/0307513320978411
Keller, W.D., Hanson, R.F., Huang, W.H., Cervantes, A. (1971). Sequential active alteration of rhyolitic volcanic rock to endellite and a precursor phase of it at a spring in Michoacan, Mexico. Clays and Clay Minerals, 19, 121127. https://doi.org/10.1346/ccmn.1971.0190209
Khalil, M. M., Mekawey, A. A., Alatawi, F. A. (2022). Microbial Deterioration of the Archaeological Nujoumi Dome (Egypt-Aswan): Identification and Suggested Control Treatments by Natural Products. Journal of Pure & Applied Microbiology, 16(2). https://doi.org/10.22207/JPAM.16.2.22
Klemm, D.D., Klemm, R. (2001). The building stones of ancient Egypt-A gift of its geology. Journal of African Earth Sciences, 33(3-4), 631-642. https://doi.org/10.1016/s0899-5362(01)00085-9
Matsuzawa, M., Chigira, M. (2020). Weathering mechanism of arenite sandstone with sparse calcite cement content. Catena, 187, 104367. https://doi.org/10.1016/j.catena.2019.104367
Maurice, P.A., Vierkorn, M.A., Hersman, L.E., Fulghum, J.E. (2001). Dissolution of well and poorly ordered kaolinites by an aerobic bacterium. Chemical Geology, 180(1-4), 81-97. https://doi.org/10.1016/S0009-2541(01)00307-2
Mitchell, A., Sass, O. (2024). Rock weathering: The effects of varying rock moisture on controlled weathering cycles in low porosity limestone. Geomorphology, 457, 109149. https://doi.org/10.1016/j.geomorph.2024.109149
Nkoh, J. N., Shi, R. Y., Li, J. Y., Xu, R. K. (2024). Combined application of Pseudomonas fluorescens and urea can mitigate rapid acidification of cropland Ultisol. Science of The Total Environment, 906, 167652. https://doi.org/10.1016/j.scitotenv.2023.167652
Niu, Q., Hu, M., He, J., Zhang, B., Su, X., Zhao, L., Pan, J., Wang, Z., Du, Z., Wei, Y. (2023). The chemical damage of sandstone after sulfuric acid-rock reactions with different duration times and its influence on the impact mechanical behaviour. Heliyon, 9(12). https://doi.org/10.1016/j.heliyon.2023.e22346
Osman, A. (2019). Detection of proteins as organic additive in flooring mortars used in excavated remains from Anba Shenoute Monastery, Sohag, Egypt. Shedet, 6(6), 203211. 10.21608/SHEDET.006.11
Perez, A., Rossano, S., Trcera, N., Verney-Carron, A., Rommevaux, C., Fourdrin, C., Agnello, A.C., Huguenot, D., Guyot, F. (2019). Direct and indirect impact of the bacterial strain Pseudomonas aeruginosa on the dissolution of synthetic Fe(III)-and Fe(II)-bearing basaltic glasses. Chemical Geology, 523, 9-18. https://doi.org/10.1016/j.chemgeo.2019.05.033
Pinna, D. (2017). Coping with Biological Growth on Stone Heritage Objects: Methods, Products, Applications, and Perspectives, Coping with Biological Growth on Stone Heritage Objects: Methods, Products, Applications, and Perspectives. Apple academic press, 1-382. https://doi.org/10.1201/9781315365510
Pinna, D. (2022). Can we do without biocides to cope with biofilms and lichens on stone heritage?. International Biodeterioration & Biodegradation, 172, 105437. https://doi.org/10.1016/j.ibiod.2022.105437
Pinna, D. (2023). Microbial recolonization of artificial and natural stone artworks after cleaning and coating treatments. Journal of Cultural Heritage, 61, 217-228. https://doi.org/10.1016/j.culher.2023.04.006
Potysz, A., Bartz, W. (2022). Bioweathering of minerals and dissolution assessment by experimental simulations— Implications for sandstone rocks: A review. Construction and Building Materials, 316, 125862. https://doi.org/10.1016/j.conbuildmat.2021.125862
Potysz, A., Bartz, W. (2023). Dissolution of red sandstones exposed to siderophore-producing bacterium Pseudomonas fluorescens: Experimental bioweathering coupled to a geochemical model. Construction and Building Materials, 369, 130584. https://doi.org/10.1016/j.conbuildmat.2023.130584
Rachid, D., Ahmed, B. (2005). Effect of iron and growth inhibitors on siderophores production by Pseudomonas fluorescens. African Journal of Biotechnology, 4(7), 697-702. https://doi.org/10.5897/ajb2005.000-3129
Reichard, P.U., Kretzschmar, R., Kraemer, S.M. (2007). Dissolution mechanisms of goethite in the presence of siderophores and organic acids. Geochimica et Cosmochimica Acta, 71(23), 5635-5650. https://doi.org/10.1016/j.gca.2006.12.022
Ribeiro, R.P., Paraguassú, A.B. (2008). Relationship between technological properties and slab surface roughness of siliceous dimension stones. International Journal of Rock Mechanics and Mining Sciences, 45(8), 1526-1531. https://doi.org/10.1016/j.ijrmms.2008.02.006
Redman, J. A., Walker, S. L., Elimelech, M. (2004). Bacterial adhesion and transport in porous media: Role of the secondary energy minimum. Environmental science & technology, 38(6), 1777-1785. https://doi.org/10.1021/es034887l
Sakr, A., Ghaly, M., Reda, F., Ezzat, S. M., Hameid, E. A. (2018). Characterization of microbiota deteriorating specific coptic manuscripts, Coptic Museum, Egypt. International Journal of Research Studies in Biosciences, 6(9), 1-15. http://dx.doi.org/10.20431/2349-0365.0608005
Scrivano, S., Gaggero, L., Gisbert Aguilar, J. (2018). Microporosity and minero-petrographic features influences on decay: Experimental data from four dimension stones. Construction and Building Materials, 173, 342-349. https://doi.org/10.1016/j.conbuildmat.2018.04.041
Sheldon, H. A., Wheeler, J., Worden, R. H., Cheadle, M. J. (2003). An analysis of the roles of stress, temperature, and pH in chemical compaction of sandstones. Journal of Sedimentary Research, 73(1), 64-71. https://doi.org/10.1306/070802730064
Sitzia, F., Lisci, C., Mirão, J. (2021). Building pathology and environment: Weathering and decay of stone construction materials subjected to a Csa mediterranean climate laboratory simulation. Construction and Building Materials, 300, 124311. https://doi.org/10.1016/j.conbuildmat.2021.124311
Skipper, P.J.A. Schulze, H., Williams, D. R., Dixon, R.A. (2016). Biodeterioration of limestone-built heritage: a multidisciplinary challenge. Science And Art: A Future For Stone, 139.
Sterflinger, K., Piñar, G. (2013). Microbial deterioration of cultural heritage and works of art-Tilting at windmills? Applied Microbiology and Biotechnology, 97, 96379646. https://doi.org/10.1007/s00253-013-5283-1
Sun, Q., Zhang, Y. (2019). Combined effects of salt, cyclic wetting and drying cycles on the physical and mechanical properties of sandstone. Engineering geology, 248, 70-79. https://doi.org/10.1016/j.enggeo.2018.11.009
Tayler, S., May, E. (1991). The seasonality of heterotrophic bacteria on sandstones of ancient monuments. International Biodeterioration, 28(1-4), 49-64. https://doi.org/10.1016/0265-3036(91)90033-N
Temraz M. G, Khallaf M. K. (2016). Weathering behavior investigations and treatment of Kom Ombo temple sandstone, Egypt – Based on their sedimentological and petrogaphical information. Journal of African Earth Sciences, 113, 194-204. https://doi.org/10.1016/j.jafrearsci.2015.10.021
Tiano, P. (2001). Biodegradation of Cultural Heritage: Decay Mechanisms and Control Methods In Seminar article, New University of Lisbon, Department of Conservation and Restoration (pp. 7-12).
Tourney, J., Ngwenya, B.T. (2014). The role of bacterial extracellular polymeric substances in geomicrobiology. Chemical Geology, 386, 115-132. https://doi.org/10.1016/j.chemgeo.2014.08.011
Trudgill, S.T., Viles, H.A. (1998). Field and laboratory approaches to limestone weathering. Quarterly Journal of Engineering Geology and Hydrogeology, 31(4), 333-341. https://doi.org/10.1144/GSL.QJEG.1998.031.P4.06
Tseng, C.F., Burger, A., Mislin, G.L.A., Schalk, I.J., Yu, S.S.F., Chan, S.I., Abdallah, M.A. (2006). Bacterial siderophores: The solution stoichiometry and coordination of the Fe(III) complexes of pyochelin and related compounds. JBIC Journal of Biological Inorganic Chemistry, 11, 419-432. https://doi.org/10.1007/s00775-006-0088-7
Vieira, M.J., Melo, L.F. (1995). Effect of clay particles on the behaviour of biofilms formed by Pseudomonas Fluorescens. Water Science and Technology, 32(8), 45-52. https://doi.org/10.1016/0273-1223(96)00006-6
Wang, C., Pei, W., Zhang, M., Lai, Y., Dai, J. (2021). Multiscale experimental investigations on the deterioration mechanism of sandstone under wetting–drying cycles. Rock Mechanics and Rock Engineering, 54, 429-441. https://doi.org/10.1007/s00603-020-02257-2
Warscheid, T. (2000). Integrated Concepts for the Protection of Cultural Artifacts Against Biodeterioration, in: Of Microbes and Art: The role of microbial communities in the degradation and protection of cultural heritage, 185-201. https://doi.org/10.1007/978-1-4615-4239-1_13
Wells, T., Hancock, G., Fryer, J. (2008). Weathering rates of sandstone in a semi-arid environment (Hunter Valley, Australia). Environmental Geology, 54, 1047-1057. 10.1007/s00254-007-0871-y
White, A. F., Brantley, S. L. (2003). The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field?. Chemical Geology, 202(3-4), 479-506. https://doi.org/10.1016/j.chemgeo.2003.03.001
Yan, S., Xie, N., Liu, J., Li, L., Peng, L., Jiang, S. (2022). Salt weathering of sandstone under dehydration and moisture absorption cycles: An experimental study on the sandstone from Dazu rock carvings. Earth Surface Processes and Landforms, 47(4), 977-993. 10.1002/esp.5298