Bajda, T., Mozgawa W., Manecki M., & Flis, J. (2011). Vibrational spectroscopic study of mimetite–pyromorphite solid solutions. Polyhedron, 30, 2479–2485. https://doi.org/10.1016/j.poly.2011.06.034
Breemen, O., van, Bowes, D. R., Aftalion, M., & Żelaźniewicz, A. (1988). Devonian tectonothermal activity in the Sowie Góry gneissic block, Sudetes, southwestern Poland: evidence from Rb-Sr and U-Pb isotopic studies. Annales Societatis Geologorum Poloniae 58, 3–19.
Frost, R.L., Bouzaid, J.M., Palmer, S. (2007). The structure of mimetite, arsenian pyromorphite and hedyphane – A Raman spectroscopic study. Polyhedron, 26, 2964–2970. https://doi.org/10.1016/j.poly.2007.01.038
Inegbenebor, A.I., Thomas, J.H., & Williams, P.A. (1989). The chemical stability of mimetite and distribution coefficients for pyromorphite-mimetite solid solutions. Mineralogical Magazine 53, 363–371.
Jastrzębski, M., Budzyń, B., Żelaźniewicz, A., Konečný, P., Sláma, J., Kozub-Budzyń, G. A., Skrzypek, E., & Jaźwa, A. (2021). Eo-Variscan metamorphism in the Bohemian Massif: Thermodynamic modelling and monazite geochronology of gneisses and granulites of the Góry Sowie Massif, SW Poland. Journal of Metamorphic Geology, 39(6), 751–779.
Keim, M.F., & Markl, G. (2015). Weathering of galena: Mineralogical processes, hydrothermal fluid path modeling, and estimation of the growth rate of pyromorphite. American Mineralogist 100(7), 1584–1594. https://doi.org/10.2138/am-2015-5183
Keper, J.C. (2004). The Goodsprings mining district, Clark County. In: Minerals of Nevada (S.B. Castor, G.C. Ferdock, eds.) Nevada Bureau of Mines and Geology Special Publications. p 91–101.
Ketcham, R.A. (2015). Calculation of stoichiometry from EMP data for apatite and other phases with mixing on monovalent anion sites. American Mineralogist 100(7), 1600–1623. https://doi.org/10.2138/am-2015-5171
Markl, G., Marks, M.A.W., Holzäpfel, J., & Wenzel, T. (2014). Major, minor, and trace element composition of pyromorphite-group minerals as recorder of supergene weathering processes from the Schwartzwald mining district, SW Germany. American Mineralogist 99(5-6), 1133–1146. https://doi.org/10.2138/am.2014.4789
Pasero, M., Kampf, A.R., Ferraris, C., Pekov, I.V., Rakovan, J., & White, T.J. (2010). Nomenclature of the apatite supergroup minerals. European Journal of Mineralogy 22(2), 163–197. https://doi.org/10.1127/0935-1221/2010/0022-2022
Puzio, B., Solecka, U., Topolska, J., Manecki, M., & Bajda, T. (2021). Solubility and dissolution mechanisms of vanadinite Pb5(VO4)3Cl: Effects of temperature and PO4 substitutions. Applied Geochemistry 131, 105015. https://doi.org/10.1016/j.apgeochem.2021.105015
Sánchez-Pastor, N., Pina, C.M., Astilleros, J.M., Fernández-Díaz, L., & Putnis A. (2005). Epitaxial growth of celestite on baryte (001) face at a molecular scale. Surface Science 581, 225–235. https://doi.org/10.1016/j.susc.2005.02.051
Song, H., Liu, J., & Cheng, H. (2018). Structural and spectroscopic study of arsenate and vanadate incorporation into apatite group: implications for semi-quantitative estimation of As and V contents in apatite. Spectrochimica Acta 188, 488–494. https://doi.org/10.1016/j.saa.2017.07.028