Have a personal or library account? Click to login

Mimetite and polymineralic mimetite-pyromorphite-vanadinite single crystals from the Sowie Mts, Poland

Open Access
|Sep 2024

References

  1. Bajda, T., Mozgawa W., Manecki M., & Flis, J. (2011). Vibrational spectroscopic study of mimetite–pyromorphite solid solutions. Polyhedron, 30, 2479–2485. https://doi.org/10.1016/j.poly.2011.06.034
  2. Breemen, O., van, Bowes, D. R., Aftalion, M., & Żelaźniewicz, A. (1988). Devonian tectonothermal activity in the Sowie Góry gneissic block, Sudetes, southwestern Poland: evidence from Rb-Sr and U-Pb isotopic studies. Annales Societatis Geologorum Poloniae 58, 3–19.
  3. Flis, J., Manecki, M., & Bajda, T. (2011). Solubility of pyromorphite Pb5(PO4)3Cl – mimetite Pb5(AsO4)3Cl solid solution series. Geochimica et Cosmochimica Acta 75(7), 1858–1868. https://doi.org/10.1016/j.gca.2011.01.021
  4. Frost, R.L., Bouzaid, J.M., Palmer, S. (2007). The structure of mimetite, arsenian pyromorphite and hedyphane – A Raman spectroscopic study. Polyhedron, 26, 2964–2970. https://doi.org/10.1016/j.poly.2007.01.038
  5. Frost, R.L., Crane, M., Williams, P.A., & Kloprogge, J.T. (2003). Isomorphic substitution in vanadinite [Pb5(VO4)3Cl] – a Raman spectroscopic study. Journal of Raman Spectroscopy 34(3), 214–220. https://doi.org/10.1002/jrs.978
  6. Inegbenebor, A.I., Thomas, J.H., & Williams, P.A. (1989). The chemical stability of mimetite and distribution coefficients for pyromorphite-mimetite solid solutions. Mineralogical Magazine 53, 363–371.
  7. Janicka, U., Bajda, T., Topolska, J., & Manecki, M. (2014). Optimization of synthesis conditions of pyromorphite-vanadynite and mimetite-vanadynite solid solution series. Geology, Geophysics and Environment 40(1), 88–88.
  8. Jastrzębski, M., Budzyń, B., Żelaźniewicz, A., Konečný, P., Sláma, J., Kozub-Budzyń, G. A., Skrzypek, E., & Jaźwa, A. (2021). Eo-Variscan metamorphism in the Bohemian Massif: Thermodynamic modelling and monazite geochronology of gneisses and granulites of the Góry Sowie Massif, SW Poland. Journal of Metamorphic Geology, 39(6), 751–779.
  9. Keim, M.F., & Markl, G. (2015). Weathering of galena: Mineralogical processes, hydrothermal fluid path modeling, and estimation of the growth rate of pyromorphite. American Mineralogist 100(7), 1584–1594. https://doi.org/10.2138/am-2015-5183
  10. Keper, J.C. (2004). The Goodsprings mining district, Clark County. In: Minerals of Nevada (S.B. Castor, G.C. Ferdock, eds.) Nevada Bureau of Mines and Geology Special Publications. p 91–101.
  11. Ketcham, R.A. (2015). Calculation of stoichiometry from EMP data for apatite and other phases with mixing on monovalent anion sites. American Mineralogist 100(7), 1600–1623. https://doi.org/10.2138/am-2015-5171
  12. Kostov, I., & Kostov, R. (1999). Crystal habits of minerals. Prof. Marin Drinov Publishing House & Pensoft Publishers, Sofia.
  13. Markl, G., Marks, M.A.W., Holzäpfel, J., & Wenzel, T. (2014). Major, minor, and trace element composition of pyromorphite-group minerals as recorder of supergene weathering processes from the Schwartzwald mining district, SW Germany. American Mineralogist 99(5-6), 1133–1146. https://doi.org/10.2138/am.2014.4789
  14. Nakamoto, A., Urasima, Y., Sugura, S., Nakano, H., Yachi, T., & Tadokoro, K. (1969). Pyromorphite-mimetite minerals from the Otaru-Matsukura baryte mine in Hokkaido, Japan. Mineralogical Journal 6(1/2), 85–101.
  15. Pasero, M., Kampf, A.R., Ferraris, C., Pekov, I.V., Rakovan, J., & White, T.J. (2010). Nomenclature of the apatite supergroup minerals. European Journal of Mineralogy 22(2), 163–197. https://doi.org/10.1127/0935-1221/2010/0022-2022
  16. Puzio, B., Solecka, U., Topolska, J., Manecki, M., & Bajda, T. (2021). Solubility and dissolution mechanisms of vanadinite Pb5(VO4)3Cl: Effects of temperature and PO4 substitutions. Applied Geochemistry 131, 105015. https://doi.org/10.1016/j.apgeochem.2021.105015
  17. Sánchez-Pastor, N., Pina, C.M., Astilleros, J.M., Fernández-Díaz, L., & Putnis A. (2005). Epitaxial growth of celestite on baryte (001) face at a molecular scale. Surface Science 581, 225–235. https://doi.org/10.1016/j.susc.2005.02.051
  18. Solecka, U., Bajda, T., Topolska, J., Zelek-Pogudz, S., & Manecki, M. (2018). Raman and Fourier transform infrared spectroscopic study of pyromorphite-vanadinite solid solutions. Spectrochimica Acta A. 190, 96–103. https://doi.org/10.1016/j.saa.2017.08.061
  19. Song, H., Liu, J., & Cheng, H. (2018). Structural and spectroscopic study of arsenate and vanadate incorporation into apatite group: implications for semi-quantitative estimation of As and V contents in apatite. Spectrochimica Acta 188, 488–494. https://doi.org/10.1016/j.saa.2017.07.028
  20. Stysz, M. & Mączka, M. (2007). The Friedrich von Thielau mine in the Sowie Mts. Sudety 10. 8–9 (in Polish).
  21. Sunagawa, I. (2007). Crystals. Growth, Morphology and Perfection. Cambridge University Press.
  22. Szełęg, E. (2008). Vanadinite from Stanisław quarry (Izerskie Garby Zone, Sudetes, Poland). Mineralogia - Special Papers, 32.
  23. Szełęg, E. (2023). Minerały i skały Polski. Multico Oficyna Wydawnicza, Warszawa.
  24. Traube, H. (1888). Die Minerale Schlesiens. J.U. Kern’s Verlag. Breslau.
DOI: https://doi.org/10.2478/mipo-2024-0005 | Journal eISSN: 1899-8526 | Journal ISSN: 1899-8291
Language: English
Page range: 48 - 59
Submitted on: Jan 7, 2024
Accepted on: Jul 31, 2024
Published on: Sep 26, 2024
Published by: Mineralogical Society of Poland
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2024 Eligiusz Szełęg, Janusz Janeczek, Rafał Juroszek, Marta Danila, published by Mineralogical Society of Poland
This work is licensed under the Creative Commons Attribution 4.0 License.