Have a personal or library account? Click to login

Pollution sources and metallic elements mobility recorded by heavy minerals in soils affected by Cu-smelting (Legnica, SW Poland)

Open Access
|Feb 2024

References

  1. Bong, W. S. K., Matsumura, K., Yokoyama, K., Nakai, I. (2010). Provenance study of early and middle bronze age pottery from Kaman-Kalehöyük, Turkey, by heavy mineral analysis and geochemical analysis of individual hornblende grains. Journal of Archaeological Science, 37,2165-2178. https://doi.org/10.1016/j. jas.2010.03.013
  2. Cabała, J., Teper, L. (2007). Metalliferous constituents of rhizosphere soils contaminated by Zn-Pb mining in Southern Poland. Water, Air Soil Pollution, 178,351-362. https://doi.org/10.1007/s11270-006-9203-1
  3. Carlson, W. R. (2016). Heavy minerals in soils from the Athabasca basin and the implications for exploration geochemistry of uranium deposits at depth. A thesis submitted to the Department of Geological Sciences and Geological Engineering Queen’s University Kingston, Ontario, Canada. http://hdl.handle. net/1974/15203
  4. Cho, K. H., Jang, H., Hong, Y.-S., Kim, S. J., Basch, R. H., Fash, J. W. (2008). The size effect of zircon particles on the friction characteristics of brake lining materials. Wear, 264, 291-297. https://doi.org/10.1016/j.wear.2007.03.018
  5. Chopin, E. I., Alloway, B. J. (2007). Trace element partitioning and soil particle characterisation around mining and smelting areas at Tharsis, Ríotinto and Huelva, SW Spain. Science of the Total Environment, 373(2-3), 488-500. https://doi.org/10.1016/j.scitotenv.2006.11.037
  6. Ettler, V., Johan, Z., Kříbek, B., Veselovský, F., Mihaljevič, M., Vanik, A., Penížek, V., Majer, V., Sracek, O., Mapani, B., Kamona, F., NyambeEttler, V., Petráňová, V., Vítková, M., Mihaljevič, M., Šebek, O., Kříbek, B. (2016). Reactivity of fly ash from copper smelters in an Oxisol: Implications for smelter-polluted soil systems in the tropics. Journal of Soils Sediments, 16,115-124. https://doi.org/10.1007/s11368-015-1174-7
  7. Gałuszka, A., Migaszewski, Z. M. (2018). Glass microspheres as a potential indicator of the Anthropocene: A first study in an urban environment. The Holocene, 28(2), 323-329.https://doi.org/10.1177/0959683617721332
  8. Hao, H., Guo, R., Gu, Q., Hu, X. (2019). Machine learning application to automatically classify heavy minerals in river sand by using SEM/EDS data. Minerals Engineering, 143,105899. https://doi.org/10.1016/j. mineng.2019.105899
  9. Hołtra, A., Zamorska-Wojdyła, D. (2020). The pollution indices of trace elements in soils and plants close to the copper and zinc smelting works in Poland’s Lower Silesia. Environmental Science and Pollution Research, 27(14), 16086-16099. https://doi.org/10.1007/s11356-020-08072-0
  10. Jagodziński, R., Sternal, B., Szczuciński, W., Chagué-Goff, C., Sugawara, D. (2012). Heavy minerals in the 2011 Tohoku-oki tsunami deposits-insights into sediment sources and hydrodynamics. Sedimentary Geology, 282, 57-64. https://doi.org/10.1016/j.sedgeo.2012.07.015
  11. Jarošíková, A., Ettler, V., Mihaljevič, M., Penížek, V., Matoušek, T., Culka, A., Drahota, P. (2018). Transformation of arsenic-rich copper smelter flue dust in contrasting soils: A 2-year field experiment. Environmental Pollution, 237,83-92. https://doi.org/10.1016/j.envpol.2018.02.028
  12. Kacem, I., Gautron, L., Coillot, D., Neuville, D. R. (2017). Structure and properties of lead silicate glasses and melts. Chemical Geology, 461,104-114. https://doi.org/10.1016/j.chemgeo.2017.03.030.hal-01632315
  13. Karczewska, A., Kaszubkiewicz, J., Jezierski, P., Kabała, C., Król, K. (2010). Level of soil contamination with copper, lead and cadmium within the protection zone of copper smelter Legnica in the years 1982 and 2005. Roczniki Gleboznawcze, 61,45-51. (in Polish with English summary)
  14. KGHM Cuprum Sp.z.o.o. Research Center. Monograph of KGHM Polish copper company; KGHM Cuprum Sp.z.o.o. Research Center: Wrocław, Poland, 2007. (In Polish)
  15. Khan, R., Das, S., Kabir, S., Habib, Md. A., Naher, K., Islam, M. A., Tamim, U., Rahman, A. K. M. R., Deb, A. K., Hossain, S. M. (2019). Evaluation of the elemental distribution in soil samples collected from ship-breaking areas and an adjacent island. Journal of Environmental Chemical Engineering, 7(3), 103189. https://doi.org/10.1016/j. jece.2019.103189
  16. Lång, L. O. (2000). Heavy mineral weathering under acidic soil conditions. Applied Geochemistry, 15(4), 415-423. https://doi.org/10.1016/S0883-2927(99)00064-5
  17. Lanteigne, S., Schindler, M., McDonald, A. M. (2014). Distribution of metals and metalloids in smelter-derived particulate matter in soils and mineralogical insights into their retention and release in a low-t environment. The Canadian Mineralogist, 52(3), 453-471. https://doi.org/10.3749/canmin.52.3.453
  18. Lanteigne, S., Schindler, M., McDonald, A. M., Skeries, K., Abdu, Y., Mantha, N. M., Murayama, M., Hawthorne, F. C., Hochella, Jr., M. F. (2012). Mineralogy and weathering of smelter-derived spherical particles in soils: Implications for the mobility of Ni and Cu in the surficial environment. Water, Air Soil Pollution, 223,3619-3641. https://doi.org/10.1007/s11270-012-1135-3
  19. Li, X., Wu, L., Zhou, J., Luo, Y., Zhou, T., Li, Z., Hu, P., Christie, P. (2022). Potential environmental risk of natural particulate cadmium and zinc in sphalerite-and smithsonite-spiked soils. Journal of Hazardous Materials, 429,128313, https://doi.org/10.1016/j. jhazmat.2022.128313
  20. Lim, Y. C., Marolf, A., Estoppey, N., Massonnet, G. (2021). A probabilistic approach towards source level inquiries for forensic soil examination based on mineral counts. Forensic Science International, 328,111035. https://doi.org/10.1016/j.forsciint.2021.111035
  21. Lis, J., Pasieczna, A. (2005). Anthropogenic soils pollution within the Legnica-Głogów copper district. Polish Geological Institute Special Papers, 17, 42-48.
  22. Mange, M. A., Wright, D. T. (Eds.). (2007a). Heavy minerals in use. Elsevier. eBook ISBN: 9780080548593
  23. Mange, M. A., Wright, D. T. (2007b). High-resolution heavy mineral analysis (HRHMA): A brief summary. Developments in Sedimentology, 58,433-436. https://doi.org/10.1016/S0070-4571(07)58016-7
  24. Matelski, R. P., Turk, L. M. (1947). Heavy minerals in some podzol soil profiles in Michigan. Soil Science, 64(6), 469-488.
  25. Medyńska-Juraszek, A., Kabała, C. (2012). Heavy metal pollution of forest soils affected by the copper industry. Journal of Elementology, 17,441-451. https://doi.org/10.5601/jelem.2012.17.3.07
  26. Migaszewski, Z. M., Gałuszka, A., Dołęgowska, S., Michalik, A. (2022). Abundance and fate of glass microspheres in river sediments and roadside soils: Lessons from the Świętokrzyskie region case study (south-central Poland). Science of the Total Environment, 821,153410. https://doi.org/10.1016/j.scitotenv.2022.153410
  27. Morton, A. C. (1984). Stability of detrital heavy minerals in Tertiary Sandstones from the North Sea Basin. Clay Minerals, 19, 287-308.
  28. Morton, A. C. (1985). Heavy minerals in provenance studies. In Provenance of arenites, G. G. Zuffa (Ed.).(pp. 249-277). Department of Earth Sciences, University of Calabria, Castiglione Cosentino Stazione, Cosenza, Italy: Springer Netherlands.
  29. Pettijohn, F. J. (1941). Persistence of heavy minerals and geologic age. The Journal of Geology, 49,610-625.
  30. Pietranik, A., Kierczak, J., Tyszka, R., Schulz, B. (2018). Understanding heterogeneity of a slag-derived weathered material: The role of automated SEM-EDS analyses. Minerals, 8,513. https://doi.org/10.3390/ min8llO5l3
  31. Potysz, A., Kierczak, J., Pietranik, A., Kądziołka, K. (2018). Mineralogical, geochemical, and leaching study of historical Cu-slags issued from processing of the Zechstein formation (Old Copper Basin, Southwestern Poland). Applied Geochemistry, 98,22-35. https://doi.org/10.1016/j.apgeochem.2018.08.027
  32. Razum, I., Rubinić, V., Miko, S., Ružičić, S., Durn, G. (2023). Coherent provenance analysis of terra rossa from the northern Adriatic based on heavy mineral assemblages reveals the emerged Adriatic shelf as the main recurring source of siliciclastic material for their formation. Catena, 226,107083. https://doi.org/10.1016/j.catena.2023.107083
  33. Stojanowska, A., Rybak, J., Bożym, M., Olszowski, T., Bihałowicz, J. S. (2020). Spider webs and lichens as bioindicators of heavy metals: A comparison study in the vicinity of a copper smelter (Poland). Sustainability, 12,8066. https://doi.org/10.3390/su12198066
  34. Strzelec, Ł., Niedźwiecka, W. (2012). Stan środowiska naturalnego w rejonie oddziaływania hut miedzi. MedycynaŚrodowiskowa Environmental Medicine, 15,21-31. (in Polish)
  35. Sulieman, M. M., Ibrahim, I. S., Elfaki, J. T., Dafa-Allah, M. S. (2015). Origin and distribution of heavy minerals in the surficial and subsurficial sediments of the alluvial Nile river terraces. Open Journal of Soil Science, 5,299-310. https://doi.org/10.4236/ ojss.2015.512028
  36. Tangari, A. C., Le Pera, E., Andò, S., Garzanti, E., Piluso, E., Marinangeli, L., Scarciglia, F. (2021). Soilformation in the central Mediterranean: Insight from heavy minerals. Catena, 197,104998. https://doi.org/10.1016/j.catena.2020.104998
  37. Tørseth, K., Aas, W., Breivik, K., Fjaeraa, A. M., Fiebig, M., Hjellbrekke, A. G., Lund Myhre, C., Solberg, S., Yttri, K. E. (2012). Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972-2009. Atmospheric Chemistry and Physics, 12,5447-5481. https://doi.org/10.5194/acp-12-5447-2012
  38. Trzyna, A., Rybak, J., Bartz, W., Górka, M. (2022). Health risk assessment in the vicinity of a copper smelter: Particulate matter collected on a spider web. Mineralogia, 53,36-50. https://doi.org/10.2478/ mipo-2022-0004
  39. Tuhý, M., Ettler, V., Rohovec, J., Matoušková, Š., Mihaljevič, M., Kříbek, B., Mapani, B. (2021). Metal(loid)s remobilization and mineralogical transformations in smelter-polluted savanna soils under simulated wildfire conditions. Journal of Environmental Management, 293, 112899. https://doi.org/10.1016/j. jenvman.2021.112899
  40. Tuhý, M., Hrstka, T., Ettler, V. (2020). Automated mineralogy for quantification and partitioning of metal(loid)s in particulates from mining/smelting-polluted soils. Environmental Pollution, 266,115118. https://doi.org/10.1016/j.envpol.2020.115118
  41. Tyszka, R., Kierczak, J., Pietranik, A., Ettler, V., Mihaljevič, M. (2014). Extensive weathering of zinc smelting slag in a heap in Upper Silesia (Poland): Potential environmental risks posed by mechanical disturbance of slag deposits. Applied Geochemistry, 40,70-81. https://doi.org/10.1016/j. apgeochem.2013.10.010
  42. Tyszka, R., Pietranik, A., Kierczak, J., Ettler, V., Mihaljevič, M., Medyńska-Juraszek, A. (2016). Lead isotopes and heavy minerals analyzed as tools to understand the distribution of lead and other potentially toxic elements in soils contaminated by Cu smelting (Legnica, Poland). Environmental Science and Pollution Research, 23,24350-24363. https://doi.org/10.1007/ s11356-016-7655-4
  43. Tyszka, R., Pietranik, A., Potysz, A., Kierczak, J., Schultz, B. (2021). Experimental simulations of Zn-Pb slag weathering and its impact on the environment: Effects of acid rain, soil solution, and microbial activity. Journal of Geochemical Exploration, 228,106808. https://doi.org/10.1016/j.gexplo.2021.106808
  44. Waroszewski, J., Pietranik, A., Sprafke, T., Kabała, C., Frechen, M., Jary, Z., Kot, A., Tsukamoto, S., Meyer-Heintz, S., Krawczyk, M., Łabaz, B., Schultz, B., Erban-Kochergina, Y. V. (2021). Provenance and paleoenvironmental context of the Late Pleistocene thin aeolian silt mantles in southwestern Poland-A widespread parent material for soils. Catena, 204, 1-13. https://doi.org/10.1016/j.catena.2021.105377
  45. Yu, X., Wang, Y., Lu, S. (2020). Tracking the magnetic carriers of heavy metals in contaminated soils based on X-ray microprobe techniques and wavelet transformation. Journal of Hazardous Materials, 382,121114. https://doi.org/10.1016/j.jhazmat.2019.121114
DOI: https://doi.org/10.2478/mipo-2024-0001 | Journal eISSN: 1899-8526 | Journal ISSN: 1899-8291
Language: English
Page range: 1 - 14
Submitted on: Sep 13, 2023
Accepted on: Dec 23, 2023
Published on: Feb 19, 2024
Published by: Mineralogical Society of Poland
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2024 Rafał Tyszka, Anna Pietranik, Beata Marciniak-Maliszewska, Jakub Kierczak, published by Mineralogical Society of Poland
This work is licensed under the Creative Commons Attribution 4.0 License.