Have a personal or library account? Click to login

Mapping Research on User-Generated Content in the Service Sector — A Bibliometric Analysis

Open Access
|Sep 2023

References

  1. Aggarwal, S., & Gour, A. (2020). Peeking inside the minds of tourists using a novel web analytics approach. Journal of Hospitality and Tourism Management, 45, 580–591. Scopus. https://doi.org/10.1016/j.jhtm.2020.10.009
  2. Alamoudi, E. S., & Alghamdi, N. S. (2021). Sentiment classification and aspect-based sentiment analysis on yelp reviews using deep learning and word embeddings. Journal of Decision Systems, 30(2–3), 259–281. Scopus. https://doi.org/10.1080/12460125.2020.1864106
  3. AlSurayyi, W. I., Alghamdi, N. S., & Abraham, A. (2019). Deep learning with word embedding modeling for a sentiment analysis of online reviews. International Journal of Computer Information Systems and Industrial Management Applications, 11, 227–241. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081244645&partnerID=40&md5=9d351a0adc1146e0e37bfeb4ae4949f6
  4. Babić Rosario, A., Sotgiu, F., De Valck, K., & Bijmolt, T. H. A. (2016). The effect of electronic word of mouth on sales: A meta-analytic review of platform, product, and metric factors. Journal of Marketing Research, 53(3), 297–318. https://doi.org/10.1509/jmr.14.0380
  5. Ban, H.-J., Choi, H., Choi, E.-K., Lee, S., & Kim, H.-S. (2019). Investigating key attributes in experience and satisfaction of hotel customer using online review data. Sustainability (Switzerland), 11(23). Scopus. https://doi.org/10.3390/su11236570
  6. Ban, H.-J., & Kim, H.-S. (2019). Understanding customer experience and satisfaction through airline passengers’ online review. Sustainability (Switzerland), 11(15). Scopus. https://doi.org/10.3390/su11154066
  7. Barravecchia, F., Mastrogiacomo, L., & Fiorenzo, F. (2020). Categorizing quality determinants in mining user-generated contents. Sustainability (Switzerland), 12(23), 1–12. Scopus. https://doi.org/10.3390/su12239944
  8. Barreda, A., & Bilgihan, A. (2013). An analysis of user-generated content for hotel experiences. Journal of Hospitality and Tourism Technology, 4(3), 263–280. Scopus. https://doi.org/10.1108/JHTT-01-2013-0001
  9. Bello-Orgaz, G., Jung, J. J., & Camacho, D. (2016). Social big data: Recent achievements and new challenges. Information Fusion, 28, 45–59. https://doi.org/10.1016/j.inffus.2015.08.005
  10. Bhattacharyya, J., & Dash, M. K. (2021). Investigation of customer churn insights and intelligence from social media: A netnographic research. Online Information Review, 45(1), 174–206. Scopus. https://doi.org/10.1108/OIR-02-2020-0048
  11. Borghi, M., & Mariani, M. M. (2021). Service robots in online reviews: Online robotic discourse. Annals of Tourism Research, 87(103036). Scopus. https://doi.org/10.1016/j.annals.2020.103036
  12. Brett, M. R. (2019). Customer service dimensions in state and private game reserves in northern KwaZulu-Natal, South Africa. African Journal of Hospitality, Tourism and Leisure, 8(3). Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067790389&partnerID=40&md5=1acdcfb6e13b0f01b0a307fc0e4eeb67
  13. Chen, M.-C., Hsiao, Y.-H., Chang, K.-C., & Lin, M.-K. (2019). Applying big data analytics to support Kansei engineering for hotel service development. Data Technologies and Applications, 53(1), 33–57. Scopus. https://doi.org/10.1108/DTA-05-2018-0048
  14. Cherapanukorn, V., & Sugunnasil, P. (2022). Tourist attraction satisfaction factors from online reviews. A case study of tourist attractions in Thailand. Journal of Environmental Management and Tourism, 13(2), 379–390. Scopus. https://doi.org/10.14505/jemt.v13.2(58).08
  15. Cheung, C. M. K., Lee, M. K. O., & Rabjohn, N. (2008). The impact of electronic word-of-mouth: The adoption of online opinions in online customer communities. Internet Research, 18(3), 229–247. https://doi.org/10.1108/10662240810883290
  16. Cortis, K., & Davis, B. (2021). Over a decade of social opinion mining: A systematic review. Artificial Intelligence Review, 54(7), 4873–4965. https://doi.org/10.1007/s10462-021-10030-2
  17. Cox, C. (2015). Consumer experiences of accommodation deals purchased via social coupon promotions: An Australian perspective. Journal of Hospitality Marketing and Management, 24(6), 609–632. Scopus. https://doi.org/10.1080/19368623.2014.925842
  18. Dias, J. A., Correia, A., & López, F. J. M. (2014). From information-sharing to vacation rental choices-The case of Albufeira, Portugal. International Journal of Culture, Tourism, and Hospitality Research, 8(1), 35–47. Scopus. https://doi.org/10.1108/IJCTHR-07-2013-0049
  19. Ding, K., Choo, W. C., Ng, K. Y., & Ng, S. I. (2020). Employing structural topic modelling to explore perceived service quality attributes in Airbnb accommodation. International Journal of Hospitality Management, 91. Scopus. https://doi.org/10.1016/j.ijhm.2020.102676
  20. Donthu, N., Kumar, S., Pandey, N., Pandey, N., & Mishra, A. (2021). Mapping the electronic word-of-mouth (eWOM) research: A systematic review and bibliometric analysis. Journal of Business Research, 135, 758–773. https://doi.org/10.1016/j.jbusres.2021.07.015
  21. Drevs, F., & Hinz, V. (2014). Who chooses, who uses, who rates: The impact of agency on electronic word-of-mouth about hospitals stays. Health Care Management Review, 39(3), 223–233. Scopus. https://doi.org/10.1097/HMR.0b013e3182993b6a
  22. Duan, W., Yu, Y., Cao, Q., & Levy, S. (2016). Exploring the impact of social media on hotel service performance: A sentimental analysis Approach. Cornell Hospitality Quarterly, 57(3), 282–296. Scopus. https://doi.org/10.1177/1938965515620483
  23. Eletter, S. F. (2020). Sentiment analysis towards actionable intelligence via deep learning. TEM Journal, 9(4), 1663–1668. Scopus. https://doi.org/10.18421/TEM94-44
  24. Eslami, S. P., Ghasemaghaei, M., & Hassanein, K. (2018). Which online reviews do consumers find most helpful? A multi-method investigation. Decision Support Systems, 113, 32–42. Scopus. https://doi.org/10.1016/j.dss.2018.06.012
  25. Fu, W., Wei, S., Wang, J., & Kim, H.-S. (2022). Understanding the customer experience and satisfaction of casino hotels in busan through online user-generated content. Sustainability (Switzerland), 14(10). Scopus. https://doi.org/10.3390/su14105846
  26. Gao, G. G., Greenwood, B. N., Agarwal, R., & McCullough, J. S. (2015). VOCAL minority and silent majority: How do online ratings reflect population perceptions of quality. MIS Quarterly: Management Information Systems, 39(3), 565–589. Scopus. https://doi.org/10.25300/MISQ/2015/39.3.03
  27. Gao, S., Tang, O., Wang, H., & Yin, P. (2018). Identifying competitors through comparative relation mining of online reviews in the restaurant industry. International Journal of Hospitality Management, 71, 19–32. Scopus. https://doi.org/10.1016/j.ijhm.2017.09.004
  28. Ghose, A., Ipeirotis, P. G., & Li, B. (2012). Designing ranking systems for hotels on travel search engines by mining user-generated and crowdsourced content. Marketing Science, 31(3), 493–520. Scopus. https://doi.org/10.1287/mksc.1110.0700
  29. Gunasekar, S., Kumar, D. S., Purani, K., Sudhakar, S., Dixit, S. K., & Menon, D. (2021). Understanding service quality attributes that drive user ratings: A text mining approach. Journal of Vacation Marketing, 27(4), 400–419. Scopus. https://doi.org/10.1177/13567667211003246
  30. Guo, Y., Barnes, S. J., & Jia, Q. (2017). Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet allocation. Tourism Management, 59, 467–483. Scopus. https://doi.org/10.1016/j.tourman.2016.09.009
  31. Guo, Y., Sun, S., Schuckert, M., & Law, R. (2015). Online feedback and attraction management: An exploration of the critical factors in effective operations. Asia Pacific Journal of Tourism Research, 21(8), 883–904. Scopus. https://doi.org/10.1080/10941665.2015.1080740
  32. He, W., Zha, S., & Li, L. (2013). Social media competitive analysis and text mining: A case study in the pizza industry. International Journal of Information Management, 33(3), 464–472. Scopus. https://doi.org/10.1016/j.ijinfomgt.2013.01.001
  33. Henrique de Souza, L., Kastenholz, E., & Barbosa, M. D. L. D. A. (2020). Relevant dimensions of tourist experiences in unique, alternative person-to-person accommodation-Sharing castles, treehouses, windmills, houseboats or house-buses. International Journal of Hospitality and Tourism Administration, 21(4), 390–421. Scopus. https://doi.org/10.1080/15256480.2018.1511495
  34. Hu, F., Li, H., Liu, Y., & Teichert, T. (2020). Optimizing service offerings using asymmetric impact-sentiment-performance analysis. International Journal of Hospitality Management, 89. Scopus. https://doi.org/10.1016/j.ijhm.2020.102557
  35. Hu, F., Teichert, T., Liu, Y., Li, H., & Gundyreva, E. (2019). Evolving customer expectations of hospitality services: Differences in attribute effects on satisfaction and Re-Patronage. Tourism Management, 74, 345–357. Scopus. https://doi.org/10.1016/j.tourman.2019.04.010
  36. Huang, D., Chen, Q., Huang, J., Kong, S., & Li, Z. (2021). Customer-robot interactions: Understanding customer experience with service robot. International Journal of Hospitality Management, 99. Scopus. https://doi.org/10.1016/j.ijhm.2021.103078
  37. Huang, N., Hong, Y., & Burtch, G. (2017). Social network integration and user content generation: Evidence from natural experiments. MIS Quarterly: Management Information Systems, 41(4), 1035–1058. Scopus. https://doi.org/10.25300/MISQ/2017/41.4.02
  38. Hutter, K., Hautz, J., Dennhardt, S., & Füller, J. (2013). The impact of user interactions in social media on brand awareness and purchase intention: The case of MINI on Facebook. Journal of Product & Brand Management, 22(5/6), 342–351. https://doi.org/10.1108/JPBM-05-2013-0299
  39. Hyman, D. A., Liu, J., & Black, B. S. (2022). Should patients use online reviews to pick their doctors and hospitals? Journal of Empirical Legal Studies, 19(4), 897–935. Scopus. https://doi.org/10.1111/jels.12338
  40. Iswari, N. M. S., Afriliana, N., & Suryasari. (2022). User-generated content extraction: A bibliometric analysis of the research literature (2007–2022). Journal of Hunan University Natural Sciences, 49(11), 120–126. https://doi.org/10.55463/issn.1674-2974.49.11.14
  41. Jin, C., Cheng, J., & Xu, J. (2018). Using user-generated content to explore the temporal heterogeneity in tourist mobility. Journal of Travel Research, 57(6), 779–791. Scopus. https://doi.org/10.1177/0047287517714906
  42. Jin, C., & Xu, J. (2020). Using user-generated content data to analyze tourist mobility between hotels and attractions in cities. Environment and Planning B: Urban Analytics and City Science, 47(5), 826–840. Scopus. https://doi.org/10.1177/2399808318811666
  43. Kaya, O. (2018). Exploring the satisfaction and dissatisfaction factors derived from food and beverage services of thermal hotels. Deturope, 10(3), 143–161. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063641998&partnerID=40&md5=af555d92deccbfa6386c9430ec945c79
  44. Khan, A. M., & Loan, F. A. (2022). Exploring the reviews of google maps to assess the user opinions about public libraries. Library Management, 43(8–9), 601–615. Scopus. https://doi.org/10.1108/LM-05-2022-0053
  45. Khurana, S., Qiu, L., & Kumar, S. (2019). When a doctor knows, it shows: An empirical analysis of doctors’ responses in a Q&A forum of an online healthcare portal. Information Systems Research, 30(3), 872–891. Scopus. https://doi.org/10.1287/isre.2019.0836
  46. Kim, B., Kim, S., & Heo, C. Y. (2016). Analysis of satisfiers and dissatisfiers in online hotel reviews on social media. International Journal of Contemporary Hospitality Management, 28(9), 1915–1936. Scopus. https://doi.org/10.1108/IJCHM-04-2015-0177
  47. Kim, K., Park, O.-J., Yun, S., & Yun, H. (2017). What makes tourists feel negatively about tourism destinations? Application of hybrid text mining methodology to smart destination management. Technological Forecasting and Social Change, 123, 362–369. Scopus. https://doi.org/10.1016/j.techfore.2017.01.001
  48. Kostromitina, M., Keller, D., Cavusoglu, M., & Beloin, K. (2021). “His lack of a mask ruined everything.” Restaurant customer satisfaction during the COVID-19 outbreak: An analysis of Yelp review texts and star-ratings. International Journal of Hospitality Management, 98. Scopus. https://doi.org/10.1016/j.ijhm.2021.103048
  49. Lamb, Y., Cai, W., & McKenna, B. (2020). Exploring the complexity of the individualistic culture through social exchange in online reviews. International Journal of Information Management, 54. Scopus. https://doi.org/10.1016/j.ijinfomgt.2020.102198
  50. Lee, M., Cai, Y., DeFranco, A., & Lee, J. (2020). Exploring influential factors affecting guest satisfaction: Big data and business analytics in consumer-generated reviews. Journal of Hospitality and Tourism Technology, 11(1), 137–153. Scopus. https://doi.org/10.1108/JHTT-07-2018-0054
  51. Li, Y.-H., Zheng, J., Yue, S.-T., & Fan, Z.-P. (2022). Capturing and analyzing e-WOM for travel products: A method based on sentiment analysis and stochastic dominance. Kybernetes, 51(10), 3041–3072. Scopus. https://doi.org/10.1108/K-02-2021-0146
  52. Liao, H.-L., Huang, Z.-Y., & Liu, S.-H. (2021). The effects of negative online reviews on consumer perception, attitude and purchase intention: Experimental investigation of the amount, quality, and presentation order of eWOM. ACM Transactions on Asian and Low-Resource Language Information Processing, 20(3), 1–21. https://doi.org/10.1145/3426883
  53. Lim, J., & Lee, H. C. (2020). Comparisons of service quality perceptions between full service carriers and low cost carriers in airline travel. Current Issues in Tourism, 23(10), 1261–1276. Scopus. https://doi.org/10.1080/13683500.2019.1604638
  54. Lin, P. M. C., Tung, V. W. S., Qiu Zhang, H., & Gu, Q. (2018). Tourist experience on memorable hospitality services. Journal of China Tourism Research, 14(2), 123–145. Scopus. https://doi.org/10.1080/19388160.2018.1455613
  55. Lin, S., Zuo, W., Lin, H., & Hu, Q. (2022). An online reviews information fusion method and its application to public property service quality evaluation. International Journal of Strategic Property Management, 26(1), 1–10. Scopus. https://doi.org/10.3846/ijspm.2022.16172
  56. Liu, X., Burns, A. C., & Hou, Y. (2017). An investigation of brand-related user-generated content on twitter. Journal of Advertising, 46(2), 236–247. Scopus. https://doi.org/10.1080/00913367.2017.1297273
  57. Liu, X.-X., & Chen, Z.-Y. (2022). Service quality evaluation and service improvement using online reviews: A framework combining deep learning with a hierarchical service quality model. Electronic Commerce Research and Applications, 54. Scopus. https://doi.org/10.1016/j.elerap.2022.101174
  58. Liu, H., He, J., Wang, T., Song, W., & Du, X. (2013). Combining user preferences and user opinions for accurate recommendation. Electronic Commerce Research and Applications, 12(1), 14–23. Scopus. https://doi.org/10.1016/j.elerap.2012.05.002
  59. Liu, F., Lai, K.-H., Wu, J., & Duan, W. (2021). Listening to online reviews: A mixed-methods investigation of customer experience in the sharing economy. Decision Support Systems, 149. Scopus. https://doi.org/10.1016/j.dss.2021.113609
  60. Liu, Y., Teichert, T., Rossi, M., Li, H., & Hu, F. (2017). Big data for big insights: Investigating language-specific drivers of hotel satisfaction with 412,784 user-generated reviews. Tourism Management, 59, 554–563. Scopus. https://doi.org/10.1016/j.tourman.2016.08.012
  61. Lockie, M., Waiguny, M. K. J., & Grabner-Kräuter, S. (2015). How style, information depth and textual characteristics influence the usefulness of general practitioners’ reviews. Australasian Marketing Journal, 23(3), 168–178. Scopus. https://doi.org/10.1016/j.ausmj.2015.01.005
  62. Lu, W., & Stepchenkova, S. (2012). Ecotourism experiences reported online: Classification of satisfaction attributes. Tourism Management, 33(3), 702–712. Scopus. https://doi.org/10.1016/j.tourman.2011.08.003
  63. Lu, W., & Stepchenkova, S. (2015). User-generated content as a research mode in tourism and hospitality applications: Topics, methods, and software. Journal of Hospitality Marketing & Management, 24(2), 119–154. https://doi.org/10.1080/19368623.2014.907758
  64. Luo, J., Huang, S., & Wang, R. (2021). A fine-grained sentiment analysis of online guest reviews of economy hotels in China. Journal of Hospitality Marketing and Management, 30(1), 71–95. Scopus. https://doi.org/10.1080/19368623.2020.1772163
  65. Luo, J. M., Vu, H. Q., Li, G., & Law, R. (2021). Understanding service attributes of robot hotels: A sentiment analysis of customer online reviews. International Journal of Hospitality Management, 98. Scopus. https://doi.org/10.1016/j.ijhm.2021.103032
  66. Lynn, M., & Kwortnik, R. J. (2020). Tipping policy effects on customer satisfaction: An informative failure to replicate. International Journal of Hospitality Management, 86. Scopus. https://doi.org/10.1016/j.ijhm.2019.102448
  67. Manosso, Franciele Cristina, & Domareski Ruiz, Thays Cristina. (2021). Using sentiment analysis in tourism research: A systematic, bibliometric, and integrative review. https://doi.org/10.5281/ZENODO.5548426
  68. Mathayomchan, B., & Taecharungroj, V. (2020). “How was your meal?” Examining customer experience using Google maps reviews. International Journal of Hospitality Management, 90. Scopus. https://doi.org/10.1016/j.ijhm.2020.102641
  69. Medina, M. L. F., Estárico, E. H., & Marrero, S. M. (2016). Q certification and tourist satisfaction in the Spanish hotels. Cuadernos de Turismo, 37, 503–506 and 203–226. Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84966671573&partnerID=40&md5=995596a7cc4c0a8743459b096760878b
  70. Mejia, J., Mankad, S., & Gopal, A. (2021). Service quality using text mining: Measurement and consequences. Manufacturing and Service Operations Management, 23(6), 1354–1372. Scopus. https://doi.org/10.1287/msom.2020.0883
  71. Mittal, D., & Agrawal, S. R. (2022). Determining banking service attributes from online reviews: Text mining and sentiment analysis. International Journal of Bank Marketing, 40(3), 558–577. Scopus. https://doi.org/10.1108/IJBM-08-2021-0380
  72. Mkono, M. (2013). Existential authenticity in cultural restaurant experiences in Victoria Falls, Zimbabwe: A netnographic analysis. International Journal of Culture, Tourism, and Hospitality Research, 7(4), 353–363. Scopus. https://doi.org/10.1108/IJCTHR-03-2013-0010
  73. Molina-Collado, A., Gómez-Rico, M., Sigala, M., Molina, M. V., Aranda, E., & Salinero, Y. (2022). Mapping tourism and hospitality research on information and communication technology: A bibliometric and scientific approach. Information Technology & Tourism, 24(2), 299–340. https://doi.org/10.1007/s40558-022-00227-8
  74. Naeem, M., Ozuem, W., & Ward, P. (2022). Understanding the accessibility of retail mobile banking during the COVID-19 pandemic. International Journal of Retail and Distribution Management, 50(7), 860–879. Scopus. https://doi.org/10.1108/IJRDM-02-2021-0064
  75. Nilashi, M., Abumalloh, R. A., Minaei-Bidgoli, B., Abdu Zogaan, W., Alhargan, A., Mohd, S., Syed Azhar, S. N. F., Asadi, S., & Samad, S. (2022). Revealing travellers’ satisfaction during COVID-19 outbreak: Moderating role of service quality. Journal of Retailing and Consumer Services, 64. Scopus. https://doi.org/10.1016/j.jretconser.2021.102783
  76. Nilashi, M., Ahmadi, H., Arji, G., Alsalem, K. O., Samad, S., Ghabban, F., Alzahrani, A. O., Ahani, A., & Alarood, A. A. (2021). Big social data and customer decision making in vegetarian restaurants: A combined machine learning method. Journal of Retailing and Consumer Services, 62. Scopus. https://doi.org/10.1016/j.jretconser.2021.102630
  77. OECD. (2007). Participative web and user-created content. Web 2.0, WIKIS and social networking. OECD Publishing. https://doi.org/10.1787/9789264037472-en
  78. Palese, B., & Usai, A. (2018). The relative importance of service quality dimensions in E-commerce experiences. International Journal of Information Management, 40, 132–140. Scopus. https://doi.org/10.1016/j.ijinfomgt.2018.02.001
  79. Parasuraman, A. P., Zeithaml, V. A., & Berry, L. L. (1988). SERVQUAL: A multiple-item scale for measuring consumer perceptions of service quality. Journal of Retailing, 64(1), 12–40. https://www.researchgate.net/publication/225083802
  80. Park, E., Kang, J., Choi, D., & Han, J. (2020). Understanding customers’ hotel revisiting behaviour: A sentiment analysis of online feedback reviews. Current Issues in Tourism, 23(5), 605–611. Scopus. https://doi.org/10.1080/13683500.2018.1549025
  81. Pjero, E., & Gjermëni, O. (2020). Tourist's satisfaction in terms of accommodation: A case study in Vlore, Albania. Business Perspectives and Research, 8(1), 67–80. Scopus. https://doi.org/10.1177/2278533719860022
  82. Pritchard, A. (1969). Statistical bibliography or bibliometrics? Journal of Documentation, 25(4), 348–349.
  83. Racherla, P., & Friske, W. (2012). Perceived ‘usefulness’ of online consumer reviews: An exploratory investigation across three services categories. Electronic Commerce Research and Applications, 11(6), 548–559. Scopus. https://doi.org/10.1016/j.elerap.2012.06.003
  84. Ranjbari, M., Shams Esfandabadi, Z., & Scagnelli, S. D. (2020). A big data approach to map the service quality of short-stay accommodation sharing. International Journal of Contemporary Hospitality Management, 32(8), 2575–2592. Scopus. https://doi.org/10.1108/IJCHM-02-2020-0097
  85. Rasool, G., & Pathania, A. (2021). Reading between the lines: Untwining online user-generated content using sentiment analysis. Journal of Research in Interactive Marketing, 15(3), 401–418. Scopus. https://doi.org/10.1108/JRIM-03-2020-0045
  86. Rasool, A., Shah, F. A., & Islam, J. U. (2020). Customer engagement in the digital age: A review and research agenda. Current Opinion in Psychology, 36, 96–100. https://doi.org/10.1016/j.copsyc.2020.05.003
  87. Schuckert, M., Liu, X., & Law, R. (2015). A segmentation of online reviews by language groups: How English and non-English speakers rate hotels differently. International Journal of Hospitality Management, 48, 143–149. Scopus. https://doi.org/10.1016/j.ijhm.2014.12.007
  88. Sezgen, E., Mason, K. J., & Mayer, R. (2019). Voice of airline passenger: A text mining approach to understand customer satisfaction. Journal of Air Transport Management, 77, 65–74. Scopus. https://doi.org/10.1016/j.jairtraman.2019.04.001
  89. Shadiyar, A., Ban, H.-J., & Kim, H.-S. (2020). Extracting key drivers of air passenger's experience and satisfaction through online review analysis. Sustainability (Switzerland), 12(21), 1–20. Scopus. https://doi.org/10.3390/su12219188
  90. Shang, Z.-Y., & Luo, J.-M. (2022). Topic modeling for hiking trail online reviews: Analysis of the mutianyu great wall. Sustainability (Switzerland), 14(6). Scopus. https://doi.org/10.3390/su14063246
  91. Shen, C.-W., Luong, T.-H., Ho, J.-T., & Djailani, I. (2020). Social media marketing of IT service companies: Analysis using a concept-linking mining approach. Industrial Marketing Management, 90, 593–604. Scopus. https://doi.org/10.1016/j.indmarman.2019.11.014
  92. Shin, S., & Nicolau, J. L. (2022). Identifying attributes of wineries that increase visitor satisfaction and dissatisfaction: Applying an aspect extraction approach to online reviews. Tourism Management, 91. Scopus. https://doi.org/10.1016/j.tourman.2022.104528
  93. Song, Y., Liu, K., Guo, L., Yang, Z., & Jin, M. (2022). Does hotel customer satisfaction change during the COVID-19? A perspective from online reviews. Journal of Hospitality and Tourism Management, 51, 132–138. Scopus. https://doi.org/10.1016/j.jhtm.2022.02.027
  94. Sreenivasan, N. D., Lee, C. S., & Goh, D. H.-L. (2012). Tweeting the friendly skies: Investigating information exchange among Twitter users about airlines. Program, 46(1), 21–42. Scopus. https://doi.org/10.1108/00330331211204548
  95. Stepaniuk, K. (2016). Memetic pool as a new approach in service quality analysis. Engineering Management in Production and Services, 8(4), 94–102. Scopus. https://doi.org/10.1515/emj-2016-0037
  96. Sthapit, E., & Björk, P. (2020). Towards a better understanding of interactive value formation: Three value outcomes perspective. Current Issues in Tourism, 23(6), 693–706. Scopus. https://doi.org/10.1080/13683500.2018.1520821
  97. Sudhakar, S., & Gunasekar, S. (2020). Examining online ratings and customer satisfaction in airlines. Anatolia, 31(2), 260–273. Scopus. https://doi.org/10.1080/13032917.2020.1747238
  98. Teichert, T., Rezaei, S., & Correa, J. C. (2020). Customers’ experiences of fast food delivery services: Uncovering the semantic core benefits, actual and augmented product by text mining. British Food Journal, 122(11), 3513–3528. Scopus. https://doi.org/10.1108/BFJ-12-2019-0909
  99. Terziyska, I. (2021). One-day cultural tours in Bulgaria: A netnography study of customer satisfaction. Tourism, 69(2), 216–227. Scopus. https://doi.org/10.37741/T.69.2.4
  100. Tontini, G., Bento, G. D. S., Milbratz, T. C., Volles, B. K., & Ferrari, D. (2017). Exploring the nonlinear impact of critical incidents on customers’ general evaluation of hospitality services. International Journal of Hospitality Management, 66, 106–116. Scopus. https://doi.org/10.1016/j.ijhm.2017.07.011
  101. Veríssimo, M., & Costa, C. (2018). Do hostels play a role in pleasing Millennial travellers? The Portuguese case. Journal of Tourism Futures, 4(1), 57–68. Scopus. https://doi.org/10.1108/JTF-12-2017-0054
  102. Viswanathan, V., Malthouse, E. C., Maslowska, E., Hoornaert, S., & Van den Poel, D. (2018). Dynamics between social media engagement, firm-generated content, and live and time-shifted TV viewing. Journal of Service Management, 29(3), 378–398. Scopus. https://doi.org/10.1108/JOSM-09-2016-0241
  103. Wąsowicz-Zaborek, E. (2020). Analiza treści generowanych przez użytkowników Internetu jako podstawa decyzji marketingowych w małym przedsiębiorstwie. In L. Bohdanowicz, & P. Dziurski (Eds.), Innowacje i marketing we współczesnych organizacjach: Wybrane zagadnienia (pp. 281–300). Oficyna Wydawnicza SGH.
  104. Witherspoon, C. L., & Stone, D. N. (2013). Analysis and sentiment detection in online reviews of tax professionals: A comparison of three software packages. Journal of Emerging Technologies in Accounting, 10(1), 89–115. Scopus. https://doi.org/10.2308/jeta-50747
  105. Wong, I. A., Huang, J., Lin, Z. C. J., & Jiao, H. (2022). Smart dining, smart restaurant, and smart service quality (SSQ). International Journal of Contemporary Hospitality Management, 34(6), 2272–2297. Scopus. https://doi.org/10.1108/IJCHM-10-2021-1207
  106. Xie, K., Kwok, L., & Wang, W. (2017). Monetizing managerial responses on tripadvisor: Performance implications across hotel classes. Cornell Hospitality Quarterly, 58(3), 240–252. Scopus. https://doi.org/10.1177/1938965516686109
  107. Xu, X., & Li, Y. (2016). The antecedents of customer satisfaction and dissatisfaction toward various types of hotels: A text mining approach. International Journal of Hospitality Management, 55, 57–69. Scopus. https://doi.org/10.1016/j.ijhm.2016.03.003
  108. Ye, Y., Zhao, Y., Shang, J., & Zhang, L. (2019). A hybrid IT framework for identifying high-quality physicians using big data analytics. International Journal of Information Management, 47, 65–75. Scopus. https://doi.org/10.1016/j.ijinfomgt.2019.01.005
  109. Yu, M., Cheng, M., Yang, L., & Yu, Z. (2022). Hotel guest satisfaction during COVID-19 outbreak: The moderating role of crisis response strategy. Tourism Management, 93. Scopus. https://doi.org/10.1016/j.tourman.2022.104618
  110. Yu, T., Rita, P., Moro, S., & Oliveira, C. (2022). Insights from sentiment analysis to leverage local tourism business in restaurants. International Journal of Culture, Tourism, and Hospitality Research, 16(1), 321–336. Scopus. https://doi.org/10.1108/IJCTHR-02-2021-0037
  111. Yu, C.-E., & Zhang, X. (2020). The embedded feelings in local gastronomy: A sentiment analysis of online reviews. Journal of Hospitality and Tourism Technology, 11(3), 461–478. Scopus. https://doi.org/10.1108/JHTT-02-2019-0028
  112. Zhang, J., Lu, X., & Liu, D. (2021). Deriving customer preferences for hotels based on aspect-level sentiment analysis of online reviews. Electronic Commerce Research and Applications, 49. Scopus. https://doi.org/10.1016/j.elerap.2021.101094
  113. Zibarzani, M., Abumalloh, R. A., Nilashi, M., Samad, S., Alghamdi, O. A., Nayer, F. K., Ismail, M. Y., Mohd, S., & Mohammed Akib, N. A. (2022). Customer satisfaction with Restaurants Service Quality during COVID-19 outbreak: A two-stage methodology. Technology in Society, 70. Scopus. https://doi.org/10.1016/j.techsoc.2022.101977
  114. Zuo, W., Bai, W., Zhu, W., He, X., & Qiu, X. (2022). Changes in service quality of sharing accommodation: Evidence from Airbnb. Technology in Society, 71. Scopus. https://doi.org/10.1016/j.techsoc.2022.102092
  115. Zupic, I., & Èater, T. (2015). Bibliometric methods in management and organization. Organizational Research Methods, 18(3), 429–472. https://doi.org/10.1177/1094428114562629
DOI: https://doi.org/10.2478/minib-2023-0016 | Journal eISSN: 2353-8414 | Journal ISSN: 2353-8503
Language: English
Page range: 65 - 100
Submitted on: Mar 22, 2023
Accepted on: Aug 14, 2023
Published on: Sep 17, 2023
Published by: Institute of Aviation
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Elżbieta Wąsowicz-Zaborek, published by Institute of Aviation
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.