Have a personal or library account? Click to login
Comparative analysis of the morphodynamics of talus slopes on Earth and Mars Cover

Comparative analysis of the morphodynamics of talus slopes on Earth and Mars

Open Access
|Jan 2026

References

  1. Bickel, VT, Honniball, C I, Martinez, SN, Rogaski, A, Sargeant, HM, Bell, SK, Czaplinski, EC, Farrant, BE, Harrington, EM, Tolometti, GD & Kring, DA 2019, ‘Analysis of lunar boulder tracks: Implications for trafficability of pyroclastic deposits’, Journal of Geophysical Research: Planets, vol. 124, pp. 1296–1314.
  2. Bickel, VT, Aaron, J, Manconi, A, Loew, S & Mall, U 2020, ‘Impacts drive lunar rockfalls over billions of years’, Nature Communications, vol. 11, pp. 1–7.
  3. Brusnikin, ES, Kreslavsky, MA, Zubarev, AE, Patratiy, VD, Krasilnikov, SS, Head, JW & Karachevtseva, IP 2016, ‘Topographic measurements of slope streaks on Mars’, Icarus, vol. 278, pp. 52–61.
  4. Caine, N 1969, ‘A model for Alpine talus slope development by slush avalanching’, The Journal of Geology, vol. 77, no. 1, pp. 92–100.
  5. Changela, HG, Chatzitheodoridis, E, Antunes, A, Beaty, D, Bouw, K, Bridges, JC, Capova, KA, Cockell, CS, Conley, CA, Dadachova, E, Dallas, TD, de Mey, S, Dong, C, Ellery, A, Ferus, M, Foing, B, Fu, X, Fujita, K, Lin, Y, Jheeta, S, Hicks, LJ, Hu, S, Kereszturi, A, Krassakis, A, Liu, Y, Oberst, J, Michalski, J, Ranjith, PM, Rinaldi, T, Rothery, D, Stavrakakis, HA, Selbmann, L, Sinha, RK, Wang, A, Williford, K, Vaci, Z, Vago, JL, Waltemathe, M & Hallsworth, JE, 2021, ‘Mars: new insights and unresolved questions’, International Journal of Astrobiology, vol. 20, pp. 394–426.
  6. Christensen, PR 1986, ‘Regional dust deposits on Mars: Physical properties, age, and history’, Journal of Geophysical Research, vol. 91, no. B3, pp. 3533–3545.
  7. Díaz, FJ, Tejedor, M, Jiménez, C, Grattan, SR, Dorta, M & Hernández, JM 2013, ‘The imprint of desalinated seawater on recycled wastewater: Consequences for irrigation in Lanzarote Island, Spain’, Agricultural Water Management, vol. 116, pp. 62–72.
  8. Driscoll, EM, Hendry, GL & Tinkler, K 1964, ‘The geology and geomorphology of Los Ajaches, Lanzarote’, Geological Journal, vol. 4, no. 2, pp. 321–334.
  9. Dundas, CM, Mellon, MT, Conway, SJ & Gastineau, R 2019, ‘Active boulder movement at high Martian latitudes’, Geophysical Research Letters, vol. 46, pp. 5075–5082.
  10. Fernández-Martínez, MÁ, García-Villadangos, M, Moreno-Paz, M, Gangloff, V, Carrizo, D, Blanco, Y, González, S, Sánchez-García, L, Prieto-Ballesteros, O, Altshuler, I, Whyte, LG, Parro, V & Fairén, AG 2021, ‘Geomicrobiological heterogeneity of lithic habitats in the extreme environment of Antarctic Nunataks: A potential early Mars analog’, Frontiers in Microbiology, vol. 12, article number: 670982.
  11. van Gasselt, S, Hauber, E, Dumke, A, Neukum, G 2008, ‘Reconstruction of the development of complex mass-wasting landforms at the Western scarp of Olympus Mons, Mars: Indicators for talus-derived landsliding and post-emplacement degradation’, Lunar and Planetary Science XXXIX, Lunar and Planetary Institute, Houston. Available from: <https://elib.dlr.de/55846/1/Van_Gasselt_et_al.Olympus_Slides.LPSC_2008.2543.pdf>. [7 January 2022].
  12. Grindrod, PM, Davis, JM, Conway, SJ & de Haas, T 2021, ‘Active boulder falls in Terra Sirenum, Mars: Constraints on timing and causes’, Geophysical Research Letters, vol. 48, article number: e2021GL094817.
  13. Hovland, HJ & Mitchell, JK 1973, ‘Boulder tracks and nature of lunar soil’, The Moon, vol. 6, no. 1–2, pp. 164–175.
  14. Infraestructura de Datos Especiales, Instituto Geográfico Nacional 2022. Available from: <https://www.ign.es/web/ide-area-nodo-ide-ign>. [2 January 2022].
  15. Kleinhans, MG, Markies, H, De Vet, SJ & Postema, FN 2011, ‘Static and dynamic angles of repose in loose granular materials under reduced gravity’, Journal of Geophysical Research, Planets, vol. 116, article number: E11004.
  16. Kotarba, A & Pech, P 2002, ‘The recent evolution of talus slopes in the High Tatra Mountains (with the Pańszczyca Valley as example)’, Studia Geomorphologica Carpatho-Balcanica, vol. 36, pp. 69–76.
  17. López-Martínez, J, Schmid, T, Serrano, E, Mink, S, Nieto, A & Guillaso, S 2016, ‘Geomorphology and landforms distribution in selected ice-free areas in the South Shetland Islands, Antarctic Northern Peninsula region’, Cuadernos de Investigación Geográfica, vol. 42, no. 2, pp. 435–455.
  18. Mars HRSC-MOLA Colorized Shaded Relief. Available from: <www.arcgis.com>. [2 September 2022].
  19. Migoń, P 2006, Geomorfologia [Geomorphology], Wydawnictwo Naukowe PWN, Warszawa.
  20. Molina, A, de Pablo, M & Ramos, M 2014, ‘Deception Island (Antarctica) as an Earth-Mars geomorphological analogue’, Conference: EUCOP4 – 4th European Conference on Permafrost. Available from: <https://www.permafrost.org/event/eucop4/>. [7 January 2022].
  21. Muhs, DR 2013, ‘The geologic records of dust in the Quaternary’, Aeolian Research, vol. 9, pp. 3–48.
  22. Nair, CPR & Unnikrishnan, V 2020, ‘Stability of the liquid water phase on Mars: A thermodynamic analysis considering Martian atmospheric conditions and perchlorate brine solutions’, ACS Omega, vol. 5, no. 16, pp. 9391–9397.
  23. NASA/JPL-Caltech/UArizona. Available from: <https://www.uahirise.org/hiwish/browse>. [2 January 2022].
  24. Orgel, C, Hauber, E, Gasselt, S, Reiss, D, Johnsson, A, Ramsdale, J, Smith, I, Swirad, Z, Séjourné, A, Wilson, J, Balme, M, Conway, SJ, Costard, F, Eke, V, Gallagher, C, Kereszturi, A, Łosiak, A, Massey, R, Platz, T, Skinner, J, Teodoro, L 2019, ‘Grid mapping the Northern plains of Mars: A new overview of recent water- and ice-related landforms in Acidalia Planitia’, Journal of Geophysical Research. Planets, vol. 124, no. 2, pp. 454–482.
  25. Otto, JC & Sass, O 2006, ‘Comparing geophysical methods for talus slope investigations in the Turtmann valley (Swiss Alps)’, Geomorphology, vol. 76, pp. 257–272.
  26. de Pablo, MA, Ramos, M, Vieira, G, Gilichinsky, D, Gómez, F, Molina, A & Segovia, R 2009, ‘Deception island, Antarctica: a terrestrial analogue for the study and understanding of the Martian permafrost and subsurface glaciers’, Geophysical Research Abstracts, vol. 11, article number: EGU2009-1292.
  27. Pietrzykowski, P, Dobak, P, Krogulec, E, Krogulec, T & Małecki, J 2017, ‘Dokumentowanie geologiczne na potrzeby posadowienia obiektów naukowej stacji badawczej w warunkach polarnych’ [‘Geological investigations reporting in polar conditions for civil engineering at the example of the construction of research station’], Przegląd Geologiczny, vol. 65, no. 10/2, pp. 692–700.
  28. PIG 2022, Leksykon Służby Hydrologicznej [Lexicon of Hydrological Service]. Available from: <https://www.pgi.gov.pl/psh/psh-2/baza-wiedzy-hydrogeologicznej/945-leksykon-psh/9021-i-l.html>. [2 September 2022].
  29. Ramsdale, JD, Balme, MR, Gallagher, C, Conway, SJ, Smith, IB, Hauber, E, Orgel, S, Séjourné, A, Costard, F, Eke, VR, van Gasselt, SA, Johnsson, A, Kereszturi, A, Losiak, A, Massey, RJ, Platz, T, Reiss, D, Skinner, JA, Swirad, ZM, Teodoro, LFA, Wilson, JT 2019, ‘Grid mapping the Northern plains of Mars: Geomorphological, radar, and water-equivalent hydrogen results from Arcadia Planitia’, Journal of Geophysical Research Planets, vol. 124, pp. 504–527.
  30. Sæter, MB 2008, Dynamics of talus formation. M.Sc. thesis, University of Oslo.
  31. Sidle, RC, Pearce, AJ & O'Loughlin, CL 1985, ‘Hillslope stability and land use’, Water Resources Monograph, vol. 11, American Geophysical Union, Washington, D.C.
  32. Sinha, RK, Rani, A, Conway, SJ, Vijayan, S, BasuSarbadhikari, A, Massé, M, Mangold, N & Bhardwaj, A 2020, ‘Boulder fall activity in the Jezero crater, Mars’, Geophysical Research Letters, vol. 47, article number: e2020GL09036.
  33. Thordarson, T, Rampino, M, Keszthelyi, L & Self, S 2009, ‘Effects of megascale eruptions on Earth and Mars’, Special Paper of the Geological Society of America, vol. 453, pp. 37–53.
  34. Turner, AK 1996, ‘Colluvium and Talus’ in Landslides – Investigaton and Mitigation, Special report 247, eds AK Turner & LR Schuster, pp. 525–549.
  35. Veilleux, S, Bhiry, N & Decaulne, A 2020, ‘Talus slope characterization in Tasiapik Valley (subarctic Québec): Evidence of past and present slope processes’, Geomorphology, vol. 349, article number: 106911.
  36. Vieira, G & Ramos, M 2003, ‘Geographic factors and geocryological activity in Livingston Island, Antarctic. Preliminary results’, Proceedings of the 8th International Conference on Permafrost, pp. 1183–1188. Available from: <https://www.arlis.org/>. [2 January 2022].
  37. Vijayan, S, Harish, Kimi, KB, Tuhi, S, Vigneshwaran, K, Sinha, RK, Conway, SL, Sivaraman, B & Bhardwaj, A 2022, ‘Boulder fall ejecta: Present day activity on Mars’, Geophysical Research Letters, vol. 49.
  38. Voelker, M, Hauber, E, Cardesín-Moinelo, A & Martin, P 2020, ‘Talus deposits on Mars – proxies for lithological properties?’, 51st Lunar and Planetary Science Conference. Available from: <https://www.hou.usra.edu/meetings/lpsc2020/pdf/1992.pdf>. [2 January 2022].
  39. World Relief Map; ArcGIS. Available form: <https://www.arcgis.com/home/webmap/viewer.html?webmap=f5de3e115dbd4d279a4d782a5113bf2c>. [10 January 2022].
  40. Xiao, Z, Zeng, Z, Ding, N & Molaro, J 2013, ‘Mass wasting features on the Moon – how active is the lunar surface?’, Earth and Planetary Science Letters, vol. 376, pp. 1–11.
  41. Zmarz, A, Rodzewicz, M, Dąbski, M, Karsznic, I, Korczak-Abshire, M & Chwedorzewska, KJ 2018, ‘Application of UAV BVLOS remote sensing data for multi-faceted analysis of Antarctic ecosystem’, Remote Sensing of Environment, vol. 217, pp. 375–388.
DOI: https://doi.org/10.2478/mgrsd-2025-0032 | Journal eISSN: 2084-6118 | Journal ISSN: 0867-6046
Language: English
Submitted on: Jan 29, 2025
|
Accepted on: Jun 17, 2025
|
Published on: Jan 9, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2026 Kacper Kreczmer, Maciej Dąbski, Anita Zambrowska, published by Faculty of Geography and Regional Studies, University of Warsaw
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT