Anantha, N, Stewart, T, Duncan, S & Pacheco, G 2025, ‘Using machine learning to explore the efficacy of administrative variables in prediction of subjective-wellbeing outcomes in New Zealand’, Scientific Reports, vol. 15, no. 1, article number: 6831.
Benyamini, Y, Leventhal, H & Leventhal, E 2004, ‘Self-rated oral health as an independent predictor of self-rated general health, self-esteem and life satisfaction’, Social Science & Medicine, vol. 59, no. 5, pp. 1109–1116.
Carrión, F 2001, ‘Centro histórico: relación social, globalización y mitos’ [‘Historic Center: Social Relations, Globalization, and Myths’] in Políticas y Gestión Para La Sostenibilidad Del Patrimonio Urbano, ed. AM Calvo, Pontificia Universidad Javeriana, Bogota, pp. 25–53.
Chen, Y, Wu, X, Hu, A, He, G & Ju, G 2021, ‚Social prediction: a new research paradigm based on machine learning’, The Journal of Chinese Sociology, vol. 8, no. 1, article number: 15.
Crous, G, Casas, F & González-Carrasco, M 2018, ‘What aspects are important to adolescents to achieve full satisfaction in life?’, Child Indicators Research, vol. 11, no. 6, pp. 1699–1718.
Di Franco, G & Santurro, M 2021, ‘Machine learning, artificial neural networks and social research’, Quality & Quantity, vol. 55, no. 3, pp. 1007–1025.
Erdogan, B, Bauer, TN, Truxillo, DM & Mansfield, LR 2012, ‘Whistle while you work: A review of the life satisfaction literature’, Journal of Management, vol. 38, no. 4, pp. 1038–1083.
Garrido, S, Méndez, I & Abellán, JM 2013, ‘Analysing the simultaneous relationship between life satisfaction and health-related quality of life’, Journal of Happiness Studies, vol. 14, pp. 1813–1838.
Gómez, J, Fernández, S & Mata, R 2001, ‘El paisaje, calidad de vida y territorio’ [‘The landscape, quality of life and territory’], Prisma Social, vol. 37, pp. 27–40.
González Biffis, A & Etulain, JC 2018, ‘Problemáticas y estrategias para la intervención y gestión en centros históricos de Italia, España y América Latina’ [‘Issues and strategies for intervention and management in Historic Centers of Italy, Spain, and Latin America ‘], Cuaderno Urbano, vol. 24, no. 24.
Gordón, S, Murillo, S & Hernández, S 2018, ‘Satisfacción con la vida y desempeño social en México: un enfoque multidimensional’ [‘Life satisfaction and social performance in Mexico: a multidimensional approach’], Sociológica (México), vol. 33, no. 94.
Gualda, E 2022, ‘Social big data, sociología y ciencias sociales computacionales’ [‘Social big data, sociology and computational social sciences’], Empiria. Revista de Metodología de Ciencias Sociales, vol. 53, pp. 147–177.
Hagmaier, T, Abele, AE & Goebel, K 2018, ‚How do career satisfaction and life satisfaction associate?’, Journal of Managerial Psychology, vol. 33, no. 2, pp. 142–160.
Kim, J, Jeong, K, Lee, S & Baek, Y 2024, ‘Machine-learning model predicting quality of life using multifaceted lifestyles in Middle-Aged South Korean adults: A cross-sectional study’, BMC Public Health, vol. 24, no. 1, article number: 159.
Lucero, P, Mikkelsen, C, Sabuda, F, Aveni, S & Ondartz, A 2007, ‘Calidad de vida y espacio: una mirada geográfica desde el territorio local’ [‘Quality of life and space: A geographical perspective from the local territory‘], Universidad Nacional de Mar del Plata, vol. 7, pp. 99–125.
MIDUVI 2016, Revitalización del Centro Histórico de Quito [Revitalization of the Historic Center of Quito], Subsecretaría de Hábitat y Asentamientos Humanos.
Mouratidis, K 2021, ‘Urban planning and quality of life: A review of pathways linking the built environment to subjective well-being’, Cities, vol. 115, article number: 103229.
Naranjo Serrano, MG, Trujillo Rodríguez, RA & Velástegui Ricaurte, NM 2020, ‘Núcleos urbanos consolidados en proceso de abandono. El caso del Centro Histórico de Quito’ [‘Consolidated urban cores in the process of abandonment: The case of the Historic Center of Quito‘], III Congreso Internacional ISUF-H. Ciudad Compacta vs. Ciudad Difusa, 1–2.
Pacione, M 2003, ‘Urban environmental quality and human wellbeing—a social geographical perspective’, Landscape and Urban Planning, vol. 65, no. 1–2, pp. 19–30.
Rathore, SS & Kumar, S 2016, ‘A decision tree regression based approach for the number of software faults prediction’, ACM SIGSOFT Software Engineering Notes, vol. 41, no. 1, pp. 1–6.
Rodríguez, S & Cabrera-Barona, P 2024, ‘A machine learning-based assessment of subjective quality of life’, Journal of Computational Social Science, vol. 7, pp. 451–467.
Sumeet Gill, SB & Jangra, V 2024, ‘Anticipating human happiness: Exploring machine learning strategies’ in Universal Threats in Expert Application and Solutions, eds VS Rathore, V Piuri, R Babo & S Karthlik, Proceedings of 3rd UNI-TEAS 2024, vol. 2, pp. 463–472.
Shen, X, Yin, F & Jiao, C 2023, ‘Predictive models of life satisfaction in older people: A machine learning approach’, International Journal of Environmental Research and Public Health, vol. 20, no. 3, article number: 2445.
Suthaharan, S 2016, ‘Machine learning models and algorithms for big data classification’, Integrated Series in Information Systems, vol. 36. Springer, Boston, MA.
Tonón, G 2010, ‘La utilización de indicadores de calidad de vida para la decisión de políticas públicas’ [‘The use of indicators of quality of life for public policies decision’], Polis (Santiago), vol. 9, no. 26, pp. 361–370.
Zhang, C, Luo, L, Xu, W & Ledwith, V 2008, ‘Use of local Moran's I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland’, Science of the Total Environment, vol. 398, pp. 212–221.