Have a personal or library account? Click to login
Evaluating the usefulness of interpolation methods in constructing isopleth maps Cover

Evaluating the usefulness of interpolation methods in constructing isopleth maps

By: Paweł Cebrykow  
Open Access
|May 2025

References

  1. Antal, A, Guerreiro, PMP & Cheval, S 2021, ‘Comparison of spatial interpolation methods for estimating the precipitation distribution in Portugal’, Theoretical and Applied Climatology, vol. 145, no. 2, pp. 1193–1206.
  2. Barnes, JA 1978, ‘Control areas and control points in isopleth mapping’, The American Cartographer, vol. 5, no. 1, pp. 65–69.
  3. Board, C 1967, ‘Maps as models’ in Models in geography, Methuen and Co., London, pp. 671–725.
  4. Bracken, I & Martin, D 1989, ‘The generation of spatial population distributions from Census Centroid Data’, Environment and Planning A: Economy and Space, vol. 21, no. 4, pp. 537–543.
  5. Cebrykow, P 2004, ‘Z problematyki określenia dokładności map izopletowych’ [‘Issue of determination of the accuracy of isopleth maps’], Polski Przegląd Kartograficzny, vol. 36, no. 4, pp. 259–265.
  6. Cebrykow, P 2005, ‘Metoda wygładzania kartogramu jako alternatywa dla tradycyjnych sposobów wykonywania map izopletowych’ [‘Cartogram smoothing method as an alternative to traditional ways of making isopleth maps’], Polski Przegląd Kartograficzny, vol. 37, no. 1, pp. 3–12.
  7. Colette, C, Escobar, F & Serradj, A 2010, Thematic Cartography and Transformations, 1st edn. Wiley-ISTE, London-Hoboken.
  8. Comber, A & Zeng, W 2019, ‘Spatial interpolation using areal features: A review of methods and opportunities using new forms of data with coded illustrations’, Geography Compass, vol. 13.
  9. Craig, WJ & Adams, JL 1991, ‘User control of isarithmic mapping’, Cartographica: The International Journal for Geographic Information and Geovisualization, vol. 28, no. 2, pp. 51–65.
  10. Darnton, G 2023, ‘Likert scales and questions - uses and abuses’, in Likert scales and questions: uses and abuses, Proceedings of the 22nd European Conference on Research Methodology in Business and Management, ECRM 202. Lisboa.
  11. Do, VH, Thomas-Agnan, C & Vanhems, A 2015, ‘Accuracy of areal interpolation methods for count data’, Spatial Statistics, vol. 14, part C, pp. 412–438.
  12. Gastner, M, T, Miaji, N, Z & Singhania, A 2022, ‘Smooth pycnophylactic interpolation produced by density-equalising map projections’, Kartografija i geoinformacije, vol. 21, no. 37, pp. 60–69.
  13. Greim, G 1912, ‘Beiträge zur Antropogeographie des Grossherzogtums Hessen’ [Contribution to the anthropogeography of the Grand Duchy of Hesse], Forschungen zur deutschen Landes- und Volkskunde [Research on German regional and folklore studies], pp. 99–100.
  14. Karp, F, Adamchuk, VI, Dutilleul, P & Melnitchouck, A 2024, ‘Comparative study of interpolation methods for low-density sampling’, Precision Agriculture. vol. 25, no. 6, pp. 2776–2800.
  15. Karsznia, I, Gołębiowska, I, Korycka-Skorupa, J & Nowacki, T 2021, ‘Searching for an optimal hexagonal shaped enumeration unit size for effective spatial pattern recognition in choropleth maps’, International Journal of Geo-Information, vol. 10, no. 576, pp. 1–24.
  16. Kim, H & Yao, X 2010, ‘Pycnophylactic interpolation revisited: Integration with the dasymetric-mapping method’, International Journal of Remote Sensing, vol. 31, no. 21, pp. 5657–5671.
  17. Kyriakidis, PC 2004, ‘A geostatistical framework for area-to-point spatial interpolation’, Geographical Analysis, vol. 36, no. 3, pp. 197–298.
  18. Lam, NSN 1983, ‘Spatial interpolation methods: A review’, The American Cartographer, vol. 10, no. 2, pp. 129–150.
  19. Li, J & Heap, AD 2014, ‘Spatial interpolation methods applied in the environmental sciences: A review’, Environmental Modelling & Software, vol. 53, pp. 173–189.
  20. Li, Z, Wang, K, Ma, H & Wu, Y 2017, ‘An adjusted inverse distance weighted spatial interpolation method’ in 3rd International Conference on Communications, Information Management and Network Security (CIMNS 2018), Atlantis Press, pp.128–132.
  21. Lin, J, Hanink, DM & Cromley, RG 2016, ‘A cartographic modeling approach to isopleth mapping’, International Journal of Geographical Information Science, vol. 31, no. 5, pp. 849–866.
  22. Liu, Z & Yan, T 2021, ‘Comparison of spatial interpolation methods based on ArcGIS’, Journal of Physics Conference Series, vol. 1961, no. 1, article number 012050.
  23. Luo, J, Zhang, W, Su, J & Xiang, F 2019, ‘Hexagonal convolutional neural networks for hexagonal grids’, IEEE Access, vol. 7, pp. 142738–142749.
  24. Medyńska-Gulij, B 2024, Kartografia geomatycznie i geomedialnie [Cartography Geomatically and Geomedially], 1st edn. Wydawnictwo Naukowe PWN, Warszawa.
  25. Meng, Q & Borders, BE 2013, ‘Assessment of regression kriging for spatial interpolation - Comparisons of seven GIS interpolation methods’, Cartography and Geographic Information Science, vol. 40, no. 1, pp. 28–31.
  26. Mohammed, JI, Comber, A & Brunsdon, C 2012, ‘Population estimation in small areas: combining dasymetric mapping with pycnophylactic interpolation’ in GIS Research UK (GISRUK) Conference, Lancaster University.
  27. Mościbroda, J 1975, ‘Rozwój poglądów na metodę izarytmiczną oraz jej zastosowań w kartografii ludnościowej i gospodarczej’ [‘Development of views on the isarithmic method and its applications in population and economic cartography’], Polski Przegląd Kartograficzny, vol. 7, no. 2, pp. 55–65.
  28. Mościbroda, J 1999, Mapy statystyczne jako nośnik informacji ilościowej [Statistical maps as carriers of quantitative information], Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej, Lublin.
  29. Perello, SZ & Simoes, N 2017, ‘Ordinary kriging vs inverse distance weighting: spatial interpolation of the sessile community of Madagascar reef, Gulf of Mexico’, PeerJ, vol. 5, article number e4078.
  30. Puu, T 2005, ‘On the genesis of hexagonal shapes’, Networks and Spatial Economics, vol. 5, pp. 5–20.
  31. Raghuvanshi, AS & Tiwari, H, L 2023, ‘Comparison of spatial interpolation methods for mapping seasonal groundwater levels’ in Geospatial and Soft Computing Techniques, Lecture Notes in Civil Engineering. Springer Nature Singapore, Singapore.
  32. Rakotonirina, H, Guridi, I, Honeine, P, Atteia, O & Van Exem, A 2024, ‘Spatial interpolation and conditional map generation using deep image prior for environmental applications’, Mathematical Geosciences, vol. 56, no. 5, pp. 949–974.
  33. Rase, WD 2001, ‘Volume-preserving interpolation of a smooth surface from polygon-related data’, Journal of Geographical Systems, vol. 3, no. 2, pp. 199–213.
  34. Robinson, AH 1961, ‘The cartographic representation of the statistical surface’, International Yearbook of Cartography, vol. 1, pp. 59–63.
  35. Sirko, M & Mościbroda, J 2002, ‘Prof. dr Franciszek Uhorczak – Jego wkład w rozwój polskiej kartografii’ [‘Prof. Dr. Franciszek Uhorczak - His contribution to the development of Polish cartography’], Polski Przegląd Kartograficzny, vol. 34, no. 4, pp. 251–260.
  36. Słomska-Przech, K & Gołębiowska, IM 2021, ‘Do different map types support map reading equally? Comparing choropleth, graduated symbols, and isoline maps for map use tasks’, International Journal of Geo-Information, vol. 10, no. 69.
  37. Tan, Q & Xu, X 2014, ‘Comparative analysis of spatial interpolation methods: an experimental study’, Sensors & Transducers, vol. 165, no. 2, pp. 155–163.
  38. Tobler, W 1979, ‘Smooth pycnophylactic interpolation for geographic regions’, Journal of the American Statistical Association, vol. 74, no. 367, pp. 619–636.
  39. Wielebski, Ł & Medyńska-Gulij, B 2023, ‘User evaluation of thematic maps on operational areas of rescue helicopters’, ISPRS International Journal of Geo-Information, vol. 12, no. 2.
  40. Workneh, HT, Chen, X, Ma, Y, Bayable, E & Dash, A 2024, ‘Comparison of IDW, Kriging and orographic based linear interpolations of rainfall in six rainfall regimes of Ethiopia’, Journal of Hydrology: Regional Studies, vol. 52, article number 101696.
  41. Yoo, E-H, Kyriakidis, PC & Tobler, W 2010, ‘Reconstructing population density surfaces from areal data: A comparison of Tobler’s Pycnophylactic Interpolation Method and area-to-point Kriging’, Geographical Analysis, vol. 42, pp. 78–98.
  42. Zimmerman, DL, Pavlik, C, Ruggles, A & Armstrong, M 1999, ‘An experimental comparison of ordinary and universal Kriging and inverse distance weighting’, Journal of the International Association for Mathematical Geology, vol. 31, no. 4, pp. 375–390.
DOI: https://doi.org/10.2478/mgrsd-2025-0014 | Journal eISSN: 2084-6118 | Journal ISSN: 0867-6046
Language: English
Page range: 116 - 123
Submitted on: Oct 30, 2024
Accepted on: Feb 20, 2025
Published on: May 28, 2025
Published by: Faculty of Geography and Regional Studies, University of Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Paweł Cebrykow, published by Faculty of Geography and Regional Studies, University of Warsaw
This work is licensed under the Creative Commons Attribution 4.0 License.