References
- Antal, A, Guerreiro, PMP & Cheval, S 2021, ‘Comparison of spatial interpolation methods for estimating the precipitation distribution in Portugal’, Theoretical and Applied Climatology, vol. 145, no. 2, pp. 1193–1206.
- Barnes, JA 1978, ‘Control areas and control points in isopleth mapping’, The American Cartographer, vol. 5, no. 1, pp. 65–69.
- Board, C 1967, ‘Maps as models’ in Models in geography, Methuen and Co., London, pp. 671–725.
- Bracken, I & Martin, D 1989, ‘The generation of spatial population distributions from Census Centroid Data’, Environment and Planning A: Economy and Space, vol. 21, no. 4, pp. 537–543.
- Cebrykow, P 2004, ‘Z problematyki określenia dokładności map izopletowych’ [‘Issue of determination of the accuracy of isopleth maps’], Polski Przegląd Kartograficzny, vol. 36, no. 4, pp. 259–265.
- Cebrykow, P 2005, ‘Metoda wygładzania kartogramu jako alternatywa dla tradycyjnych sposobów wykonywania map izopletowych’ [‘Cartogram smoothing method as an alternative to traditional ways of making isopleth maps’], Polski Przegląd Kartograficzny, vol. 37, no. 1, pp. 3–12.
- Colette, C, Escobar, F & Serradj, A 2010, Thematic Cartography and Transformations, 1st edn. Wiley-ISTE, London-Hoboken.
- Comber, A & Zeng, W 2019, ‘Spatial interpolation using areal features: A review of methods and opportunities using new forms of data with coded illustrations’, Geography Compass, vol. 13.
- Craig, WJ & Adams, JL 1991, ‘User control of isarithmic mapping’, Cartographica: The International Journal for Geographic Information and Geovisualization, vol. 28, no. 2, pp. 51–65.
- Darnton, G 2023, ‘Likert scales and questions - uses and abuses’, in Likert scales and questions: uses and abuses, Proceedings of the 22nd European Conference on Research Methodology in Business and Management, ECRM 202. Lisboa.
- Do, VH, Thomas-Agnan, C & Vanhems, A 2015, ‘Accuracy of areal interpolation methods for count data’, Spatial Statistics, vol. 14, part C, pp. 412–438.
- Gastner, M, T, Miaji, N, Z & Singhania, A 2022, ‘Smooth pycnophylactic interpolation produced by density-equalising map projections’, Kartografija i geoinformacije, vol. 21, no. 37, pp. 60–69.
- Greim, G 1912, ‘Beiträge zur Antropogeographie des Grossherzogtums Hessen’ [Contribution to the anthropogeography of the Grand Duchy of Hesse], Forschungen zur deutschen Landes- und Volkskunde [Research on German regional and folklore studies], pp. 99–100.
- Karp, F, Adamchuk, VI, Dutilleul, P & Melnitchouck, A 2024, ‘Comparative study of interpolation methods for low-density sampling’, Precision Agriculture. vol. 25, no. 6, pp. 2776–2800.
- Karsznia, I, Gołębiowska, I, Korycka-Skorupa, J & Nowacki, T 2021, ‘Searching for an optimal hexagonal shaped enumeration unit size for effective spatial pattern recognition in choropleth maps’, International Journal of Geo-Information, vol. 10, no. 576, pp. 1–24.
- Kim, H & Yao, X 2010, ‘Pycnophylactic interpolation revisited: Integration with the dasymetric-mapping method’, International Journal of Remote Sensing, vol. 31, no. 21, pp. 5657–5671.
- Kyriakidis, PC 2004, ‘A geostatistical framework for area-to-point spatial interpolation’, Geographical Analysis, vol. 36, no. 3, pp. 197–298.
- Lam, NSN 1983, ‘Spatial interpolation methods: A review’, The American Cartographer, vol. 10, no. 2, pp. 129–150.
- Li, J & Heap, AD 2014, ‘Spatial interpolation methods applied in the environmental sciences: A review’, Environmental Modelling & Software, vol. 53, pp. 173–189.
- Li, Z, Wang, K, Ma, H & Wu, Y 2017, ‘An adjusted inverse distance weighted spatial interpolation method’ in 3rd International Conference on Communications, Information Management and Network Security (CIMNS 2018), Atlantis Press, pp.128–132.
- Lin, J, Hanink, DM & Cromley, RG 2016, ‘A cartographic modeling approach to isopleth mapping’, International Journal of Geographical Information Science, vol. 31, no. 5, pp. 849–866.
- Liu, Z & Yan, T 2021, ‘Comparison of spatial interpolation methods based on ArcGIS’, Journal of Physics Conference Series, vol. 1961, no. 1, article number 012050.
- Luo, J, Zhang, W, Su, J & Xiang, F 2019, ‘Hexagonal convolutional neural networks for hexagonal grids’, IEEE Access, vol. 7, pp. 142738–142749.
- Medyńska-Gulij, B 2024, Kartografia geomatycznie i geomedialnie [Cartography Geomatically and Geomedially], 1st edn. Wydawnictwo Naukowe PWN, Warszawa.
- Meng, Q & Borders, BE 2013, ‘Assessment of regression kriging for spatial interpolation - Comparisons of seven GIS interpolation methods’, Cartography and Geographic Information Science, vol. 40, no. 1, pp. 28–31.
- Mohammed, JI, Comber, A & Brunsdon, C 2012, ‘Population estimation in small areas: combining dasymetric mapping with pycnophylactic interpolation’ in GIS Research UK (GISRUK) Conference, Lancaster University.
- Mościbroda, J 1975, ‘Rozwój poglądów na metodę izarytmiczną oraz jej zastosowań w kartografii ludnościowej i gospodarczej’ [‘Development of views on the isarithmic method and its applications in population and economic cartography’], Polski Przegląd Kartograficzny, vol. 7, no. 2, pp. 55–65.
- Mościbroda, J 1999, Mapy statystyczne jako nośnik informacji ilościowej [Statistical maps as carriers of quantitative information], Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej, Lublin.
- Perello, SZ & Simoes, N 2017, ‘Ordinary kriging vs inverse distance weighting: spatial interpolation of the sessile community of Madagascar reef, Gulf of Mexico’, PeerJ, vol. 5, article number e4078.
- Puu, T 2005, ‘On the genesis of hexagonal shapes’, Networks and Spatial Economics, vol. 5, pp. 5–20.
- Raghuvanshi, AS & Tiwari, H, L 2023, ‘Comparison of spatial interpolation methods for mapping seasonal groundwater levels’ in Geospatial and Soft Computing Techniques, Lecture Notes in Civil Engineering. Springer Nature Singapore, Singapore.
- Rakotonirina, H, Guridi, I, Honeine, P, Atteia, O & Van Exem, A 2024, ‘Spatial interpolation and conditional map generation using deep image prior for environmental applications’, Mathematical Geosciences, vol. 56, no. 5, pp. 949–974.
- Rase, WD 2001, ‘Volume-preserving interpolation of a smooth surface from polygon-related data’, Journal of Geographical Systems, vol. 3, no. 2, pp. 199–213.
- Robinson, AH 1961, ‘The cartographic representation of the statistical surface’, International Yearbook of Cartography, vol. 1, pp. 59–63.
- Sirko, M & Mościbroda, J 2002, ‘Prof. dr Franciszek Uhorczak – Jego wkład w rozwój polskiej kartografii’ [‘Prof. Dr. Franciszek Uhorczak - His contribution to the development of Polish cartography’], Polski Przegląd Kartograficzny, vol. 34, no. 4, pp. 251–260.
- Słomska-Przech, K & Gołębiowska, IM 2021, ‘Do different map types support map reading equally? Comparing choropleth, graduated symbols, and isoline maps for map use tasks’, International Journal of Geo-Information, vol. 10, no. 69.
- Tan, Q & Xu, X 2014, ‘Comparative analysis of spatial interpolation methods: an experimental study’, Sensors & Transducers, vol. 165, no. 2, pp. 155–163.
- Tobler, W 1979, ‘Smooth pycnophylactic interpolation for geographic regions’, Journal of the American Statistical Association, vol. 74, no. 367, pp. 619–636.
- Wielebski, Ł & Medyńska-Gulij, B 2023, ‘User evaluation of thematic maps on operational areas of rescue helicopters’, ISPRS International Journal of Geo-Information, vol. 12, no. 2.
- Workneh, HT, Chen, X, Ma, Y, Bayable, E & Dash, A 2024, ‘Comparison of IDW, Kriging and orographic based linear interpolations of rainfall in six rainfall regimes of Ethiopia’, Journal of Hydrology: Regional Studies, vol. 52, article number 101696.
- Yoo, E-H, Kyriakidis, PC & Tobler, W 2010, ‘Reconstructing population density surfaces from areal data: A comparison of Tobler’s Pycnophylactic Interpolation Method and area-to-point Kriging’, Geographical Analysis, vol. 42, pp. 78–98.
- Zimmerman, DL, Pavlik, C, Ruggles, A & Armstrong, M 1999, ‘An experimental comparison of ordinary and universal Kriging and inverse distance weighting’, Journal of the International Association for Mathematical Geology, vol. 31, no. 4, pp. 375–390.