Have a personal or library account? Click to login
Review of Dynamic Structural Equation Models for Real-Time Consumer Behaviour: Methodological Advances and Applications Insights Cover

Review of Dynamic Structural Equation Models for Real-Time Consumer Behaviour: Methodological Advances and Applications Insights

By: Chacha MAGASI  
Open Access
|Mar 2025

References

  1. Andriamiarana, V., Kilian, P., Kelava, A., & Brandt, H. (2023). On the requirements of non-linear dynamic latent class SEM: A simulation study with varying numbers of subjects and time points. Structural Equation Modeling. A Multidisciplinary Journal, 30(5), 789-806.https://doi.org/10.1080/10705511.2023.2169698
  2. Bolton, R. N., McColl-Kennedy, J. R., Cheung, L., Gallan, A., Orsingher, C., Witell, L., & Zaki, M. (2018). Customer experience challenges: Bringing together digital, physical and social realms. Journal of Service Management, 29(5), 776-808. https://doi.org/10.1108/JOSM-04-2018-0113
  3. Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods and Research, 21(2), 230–258.
  4. Fan, Y., Chen, J., Shirkey, G., John, R., Wu., R., S., Park, H., & Shao, C. (2016). Applications of structural equation modeling (SEM) in ecological studies: An updated review. Ecological Processes, 5(19), 1-12.https://doi.org/10.1186/s13717-016-0063-3
  5. Flores, L. Y., Atilano, R., Suh, H. N., & Navarro, R. L. (2020). A latent growth modeling analysis of the effects of perceived supports, perceived barriers, and coping efficacy on Latina/o engineering students’ life satisfaction. Journal of Career Development, 47(1), 29-43.https://doi.org/10.1177/0894845319826251
  6. Ghasemy, M., Teeroovengadum, V., Becker, J. M., & Ringle, C. M. (2020). This fast car can move faster: A review of PLS-SEM application in higher education research. Higher education, 80(6), 1121-1152.https://doi.org/10.1007/s10734-020-00534-1
  7. Hair, J., & Alamer, A. (2022). Partial least squares structural equation modeling (PLS-SEM) in second language and education research: Guidelines using an applied example. Research Methods in Applied Linguistics, 1(3), 1-16. https://doi.org/10.1016/j.rmal.2022.100027
  8. Hamaker, E. L., Asparouhov, T., & Muthén, B. (2021). Dynamic structural equation modeling as a combination of time series modeling, multilevel modeling, and structural equation modeling. The handbook of structural equation modeling (31st ed.). Guilford Press.
  9. Hidayat-ur-Rehman, I., & Alsolamy, M. (2023). A SEM-ANN analysis to examine sustainable performance in SMEs: The moderating role of transformational leadership. Journal of Open Innovation: Technology, Market, and Complexity, 9(4), 1-15.https://doi.org/10.1016/j.joitmc.2023.100166
  10. Hu, X., & Lovrich, N. P. (2020). Electronic community-oriented policing: Theories, contemporary efforts, and future directions (1st ed.). Lexington Books. https://books.google.co.tz/books?hl=en&lr=&id=5HT8DwAAQBAJ&oi
  11. Iskamto, D., & Gunawan, R. I. (2023). Impulse Purchase behaviour on the shopee platform and the role of real-time commerce marketing. Jurnal Manajemen Bisnis, 10(2), 444-461.https://doi.org/10.33096/jmb.v10i2.623
  12. Juju, U., Arizal, N., & Waldelmi, I. (2023). Changes and determinants of consumer shopping behavior in E-commerce and social media product Muslimah. Journal of Retailing and Consumer Services, 70, 1-10. https://doi.org/10.1016/j.jretconser.2022.103146
  13. Kim, T., Lee, D., Shin, J., Kim, Y., & Cha, Y. (2022). Learning hierarchical Bayesian networks to assess the interaction effects of controlling factors on spatiotemporal patterns of fecal pollution in streams. Science of The Total Environment, 812, 1-12. https://doi.org/10.1016/j.scitotenv.2021.152520
  14. Kronemann, B. (2022). The impact of AI on online customer experience and consumer behaviour. An Empirical investigation of the impact of artificial intelligence on online customer experience and consumer behaviour in a digital marketing and online retail context [Dissertation]. University of Bradford.
  15. Kruschke, J. (2015). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan (2nd ed.). Elsevier.
  16. Kwasnicka, D., Inauen, J., Nieuwenboom, W., Nurmi, J., Schneider, A., Short, C. E., & Naughton, F. (2019). Challenges and solutions for N-of-1 design studies in health psychology. Health Psychology Review. Health Psychology Review, 13(2), 163-178. https://doi.org/10.1080/17437199.2018.1564627
  17. Liu, J., Bai, X., & Elsworth, D. (2024). Evolution of pore systems in low-maturity oil shales during thermal upgrading—Quantified by dynamic SEM and machine learning. Petroleum Science, 21(3), 1739-1750.10.1016/j.petsci.2023.12.021
  18. Maranon, A., Gustafsson, P., & Nilsson, P. (2015). Option framing and Markov chain: A descriptive approach in a state-space modeling of customer behavior. Department of Statistics, Lund University School of Economics and Management, LUSEM.
  19. McNeish, D., & Hamaker, E. L. (2020). A primer on two-level dynamic structural equation models for intensive longitudinal data in Mplus. Psychological Methods, 25(5), 610-635.https://psycnet.apa.org/buy/2019-78963-001
  20. Mehedintu, A., & Soava, G. (2022). A Hybrid SEM-Neural network modeling of quality of M-commerce services under the impact of the COVID-19 Pandemic. Electronics, 11(16), 1-8.https://doi.org/10.3390/electronics11162499
  21. Mueller, R. O., & Hancock, G. R. (2018). Structural equation modeling. The reviewer’ s guide to quantitative methods in the social sciences (2nd ed.). Routledge.
  22. Napontun, K., & Pimchainoi, K. (2023). The influence of marketing promotion tools on customer satisfaction and repurchase intention: A study on TikTok marketing platform. Service, Leisure, Sport, Tourism & Education, 1(2), 1-25.https://so09.tci-thaijo.org/index.php/BTSMM/article/view/1315
  23. Natarajan, T., & Veera Raghavan, D. R. (2023). Does service journey quality explain omnichannel shoppers’ online engagement behaviors? The role of customer-store identification and gratitude toward the store. The TQM Journal, 1-13. https://doi.org/10.1108/TQM-07-2023-0217
  24. Nayyar, V. (2022). Reviewing the impact of digital migration on the consumer buying journey with robust measurement of PLS-SEM and R Studio. Systems Research and Behavioral Science, 39(3), 542-556.https://doi.org/10.1002/sres.2857
  25. Pazo, M., Gerassis, S., Araújo, M., Antunes, I. M., & Rigueira, X. (2024). Enhancing water quality prediction for fluctuating missing data scenarios: A dynamic Bayesian network-based processing system to monitor cyanobacteria proliferation. Science of the Total Environment, 927, 1-13.10.1016/j.scitotenv.2024.172340
  26. Sharma, P. N., Sarstedt, M., Ringle, C. M., Cheah, J. H., Herfurth, A., & Hair, J. F. (2024). A framework for enhancing the replicability of behavioral MIS research using prediction oriented techniques. International Journal of Information Management, 78, 1-9.https://doi.org/10.1016/j.ijinfomgt.2024.102805
  27. Tao, Y., Mishra, A., Masyn, K. E., & Keil, M. (2022). Addressing change trajectories and reciprocal relationships: A longitudinal method for information systems research. Communications of the Association for Information Systems, 50(1), 1-60. https://doi.org/10.17705/1CAIS.05018
  28. Thakkar, J. J. (2020). Structural equation modelling. Application for Research and Practice (1st ed.). Springer.https://link.springer.com/
  29. Thorson, J. T., Andrews III, A. G., Essington, T. E., & Large, S. I. (2024). Dynamic structural equation models synthesize ecosystem dynamics constrained by ecological mechanisms. Methods in Ecology and Evolution, 15(4), 744-755. https://doi.org/10.1111/2041-210X.14289.
  30. Wei, C., Lin, W., Liang, S., Chen, M., Zheng, Y., Liao, X., & Chen, Z. (2022). An all-in-one multifunctional touch sensor with carbon-based gradient resistance elements. Nano-micro letters, 14(1), 1-18.https://doi.org/10.1007/s40820-022-00875-9
  31. Westland, J. C. (2015). Structural equation models. From paths to networks. In J.C. Westeland (Ed.), Studies in Systems, Decision and Control (pp. 1-8). Springer. https://link.springer.com/book/10.1007/978-3-319-16507-3)
  32. Xu, R., DeShon, R. P., & Dishop, C. R. (2020). Challenges and opportunities in the estimation of dynamic models. Organizational Research Methods, 23(4), 595-619. https://doi.org/10.1177/1094428119842638
  33. Yu, X., Zaza, S., Schuberth, F., & Henseler, J. (2021). Counterpoint: Representing forged concepts as emergent variables using composite-based structural equation modeling. ACM SIGMIS Database: The DATABASE for Advances in Information Systems, 52(SI), 114. The Database for Advances in Information Systems, 52(SI), 114-130.https://doi.org/10.1145/3505639.3505647
  34. Zhang, Q., Li, W., Zhang, M., Zhao, K., Liu, R., & Ma, C. (2024). Internet altruistic behavior among Chinese early adolescents: Exploring differences in gender and collective efficacy using a latent growth modeling. Current Psychology, 43(6), 5007-5019. https://doi.org/10.1007/s12144-023-04660-8
  35. Zhi, L., & Ha, H. Y. (2024). The dynamic outcomes of service recovery in tourism services: A latent growth modeling approach. Journal of Hospitality and Tourism Management, 59, 70-80.https://doi.org/10.1016/j.jhtm.2024.03.006
  36. Zhu, X., Raquel, M., & Aryadoust, V. (2020). Structural equation modelling to predict performance in English proficiency tests. In V. Aryadoust & M. Raquel (Eds.), Quantitative Data Analysis for Language Assessment Volume II: Advanced Methods (pp. 101-126). Routledge.
DOI: https://doi.org/10.2478/mdke-2025-0004 | Journal eISSN: 2392-8042 | Journal ISSN: 2286-2668
Language: English
Page range: 52 - 67
Submitted on: Aug 25, 2024
Accepted on: Feb 18, 2025
Published on: Mar 25, 2025
Published by: Scoala Nationala de Studii Politice si Administrative
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Chacha MAGASI, published by Scoala Nationala de Studii Politice si Administrative
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.