Have a personal or library account? Click to login
Improving Sentiment Analysis With Neural Networks Cover
Open Access
|Jul 2024

References

  1. Khurana, D., Koli, A., Khatter, K., & Singh, S. (2017). Natural language processing: state of the art, current trends and challenges. Multimedia Tools and Applications, 82, 3713 - 3744. https://doi.org/10.1007/s11042-022-13428-4.
  2. Hirschberg, J., & Manning, C. (2015). Advances in natural language processing. Science, 349, 261 - 266. https://doi.org/10.1126/science.aaa8685.
  3. Pathak, U., & Rai, E. (2023). Sentiment Analysis: Methods, Applications, and Future Directions. International Journal for Research in Applied Science and Engineering Technology. https://doi.org/10.22214/ijraset.2023.49165.
  4. Nhan Cach Dang, María N. Moreno-García, and Fernando De la Prieta, “Sentiment Analysis Based on Deep Learning: A Comparative Study,” Electronics 9, no. 3: 483, https://doi.org/10.3390/electronics9030483.
  5. Han, H., Zhang, J., Yang, J., Shen, Y., & Zhang, Y. (2018). Generate domain-specific sentiment lexicon for review sentiment analysis. In Multimedia Tools and Applications (Vol. 77, Issue 16, pp. 21265–21280). Springer Science and Business Media LLC. https://doi.org/10.1007/s11042-017-5529-5
  6. Mitra, A. (2020). Sentiment Analysis Using Machine Learning Approaches (Lexicon based on movie review dataset). Journal of Ubiquitous Computing and Communication Technologies. https://doi.org/10.36548/jucct.2020.3.004.
  7. Go, A., Bhayani, R. and Huang, L., 2009. Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford, 1(2009), p.12.
  8. Alenzi, B., Khan, M., Hasanat, M., Saudagar, A., Alkhathami, M., & Altameem, A. (2022). Automatic Annotation Performance of TextBlob and VADER on Covid Vaccination Dataset. Intelligent Automation & Soft Computing. https://doi.org/10.32604/iasc.2022.025861.
  9. Hutto, C., & Gilbert, E. (2014). VADER: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text. Proceedings of the International AAAI Conference on Web and Social Media. https://doi.org/10.1609/icwsm.v8i1.14550.
  10. Ahmad, W., & Edalati, M. (2022). Urdu Speech and Text Based Sentiment Analyzer. ArXiv, abs/2207.09163. https://doi.org/10.48550/arXiv.2207.09163.
Language: English
Page range: 134 - 139
Published on: Jul 4, 2024
Published by: Nicolae Balcescu Land Forces Academy
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2024 Annamaria Sârbu, Alexandru Romaniuc, Anca Gavrilaş, published by Nicolae Balcescu Land Forces Academy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.