References
- Hossain, M. S., & Kaur, K. (2023). A survey on fog computing and deep learning applications in the IoT environment. Journal of Network and Computer Applications, 199, 103383.https://doi.org/10.1016/j.jnca.2022.103383
- Gupta, H., & Agarwal, A. (2024). Deep Reinforcement Learning for Offloading and Scheduling in Fog Computing Networks. IEEE Transactions on Cloud Computing. https://doi.org/10.1109/TCC.2024.000765
- Mollah, M. M., & Reaz, M. B. I. (2020). Fog Computing in Internet of Things: A Survey on Security, Privacy, and Performance. Future Generation Computer Systems, 108, 106-127.https://doi.org/10.1016/j.future.2020.03.009
- Nguyen, L. T., & Nguyen, H. S. (2021). A hybrid deep learning approach for IoT task offloading in fog computing. IEEE Internet of Things Journal, 8(12), 9761-9773. https://doi.org/10.1109/JIOT.2021.3076356
- Patil, S. M., & Chidambaram, R. (2023). Optimized Reinforcement Learning for Task Offloading in Fog Computing: Challenges and Opportunities. International Journal of Cloud Computing and Services Science, 12(1), 1-14. https://doi.org/10.11591/ijccs.2023.12101
- Kumar, A., & Gupta, A. (2022). Task Scheduling in IoT-Fog Environments Using Deep Reinforcement Learning. IEEE Access, 10, 52813-52824. https://doi.org/10.1109/ACCESS.2022.3186273
- Zeng, X., & Zhang, Y. (2021). Hybrid AI-based Solutions for Resource Management in Fog Computing. IEEE Transactions on Network and Service Management, 18(2), 2383-2396.https://doi.org/10.1109/TNSM.2021.3081002
- Alharbi, H. F., & Alturise, F. (2024). Performance Optimization of IoT Devices Using Fog Computing and Deep Learning. Future Internet, 16(2), 45. https://doi.org/10.3390/fi16020045
- Hossain, M. S., & Kaur, K. (2020). Data Offloading in Fog Computing for Efficient IoT Services. Computer Networks, 177, 107283. https://doi.org/10.1016/j.comnet.2020.107283
- Ahmad, A., & Yousaf, M. (2023). A Reinforcement Learning-Based Framework for Task Offloading in Fog Computing. Journal of Cloud Computing: Advances, Systems and Applications, 12(1), 98-112. https://doi.org/10.1186/s13677-023-00334-5
- Zhang, C., & Liu, Y. (2022). An Integrated Deep Learning Approach for Fog Computing Resource Management. Journal of Cloud Computing and Big Data, 3(1), 1-15. https://doi.org/10.1186/s40648-022-00101-3
- Guo, Y., & Zhao, Y. (2021). Adaptive Resource Allocation in Fog Computing: A Hybrid Deep Q-Learning Approach. Future Internet, 13(6), 156. https://doi.org/10.3390/fi13060156
- Pradhan, R., & Rani, S. (2024). Smart Resource Management in Fog Computing Using Deep Learning Algorithms. Soft Computing, 28(1), 205-217. https://doi.org/10.1007/s00542-023-07295-2
- Rashid, S., & Ibrahim, H. (2020). Efficient Data Processing in IoT-based Fog Networks Using Hybrid Deep Learning. IEEE Internet of Things Journal, 7(8), 7463-7475. https://doi.org/10.1109/JIOT.2020.2995604
- Ramya, R., & Ramamoorthy, S. (2024). Hybrid Fog-Edge-IoT architecture for real-time data monitoring. International Journal of Intelligent Engineering and Systems, 17(1). https://doi.org/10.22266/ijies2024.0229.22
- Abirami, R., & Poovammal, E. (2024). HAWKFOG—An enhanced deep learning framework for the Fog-IoT environment. Frontiers in Artificial Intelligence, 7, Article 1354742. https://doi.org/10.3389/frai.2024.1354742
- K. D. Singh and P. D. Singh, “Machine Learning in Robotics with Fog/Cloud Computing and IoT”, EAI Endorsed Trans AI Robotics, vol. 2, Dec. 2023.
- Chakraborty, A., Kumar, M., & Chaurasia, N. (2023). Secure framework for IoT applications using deep learning in fog computing. Journal of Information Security and Applications, 77, 103569. https://doi.org/10.1016/j.jisa.2023.103569
- A. Elhadad, F. Alanazi, A. I. Taloba, and A. Abozeid, “Fog computing service in the healthcare monitoring system for managing the real-time notification”, Journal of Healthcare Engineering, pp. 1-12, 2022.
- Narayana, V.L. and Patibandla, R.S.M.L. (2021). An Efficient Fog-Based Model for Secured Data Communication. In Integration of Cloud Computing with Internet of Things (eds M. Mangla, S. Satpathy, B. Nayak and S.N. Mohanty). https://doi.org/10.1002/9781119769323.ch3.
- Lei Zhang, Jie Liu, Fuquan Zhang, and Yu Mao. 2021. Distributed Fog Computing Based on Improved LT codes for Deep Learning in Web of Things. In Companion Proceedings of the Web Conference 2021 (WWW '21). Association for Computing Machinery, New York, NY, USA, 57–62. https://doi.org/10.1145/3442442.3451140
- M. Abdel-Basset, R. Mohamed, M. Elhoseny, A. K. Bashir, A. Jolfaei and N. Kumar, "Energy-Aware Marine Predators Algorithm for Task Scheduling in IoT-Based Fog Computing Applications," in IEEE Transactions on Industrial Informatics, vol. 17, no. 7, pp. 5068-5076, July 2021, doi: 10.1109/TII.2020.3001067.
- Bhandari S, Ranjan N, Khan P, Kim H, Hong Y-S. Deep Learning-Based Content Caching in the Fog Access Points. Electronics. 2021; 10(4):512. https://doi.org/10.3390/electronics10040512
- Shafiqur Rahman GM, Dang T, Ahmed M. Deep reinforcement learning based computation offloading and resource allocation for low-latency fog radio access networks. Intelligent and Converged Networks, 2020, 1(3): 243-257. https://doi.org/10.23919/ICN.2020.0020
- Abdulazeez, Dezheen & Askar, Shavan. (2023). Offloading mechanisms based on reinforcement learning and deep learning algorithms in the fog computing environment: A comprehensive review. IEEE Access. PP. 1-1. 10.1109/ACCESS.2023.3241881.