Have a personal or library account? Click to login
Ensembled combination of Q-Learning and Deep Extreme learning machine to achieve the high performance and less latency to handle the large IoT and Fog Nodes. Cover

Ensembled combination of Q-Learning and Deep Extreme learning machine to achieve the high performance and less latency to handle the large IoT and Fog Nodes.

Open Access
|Feb 2025

References

  1. Hossain, M. S., & Kaur, K. (2023). A survey on fog computing and deep learning applications in the IoT environment. Journal of Network and Computer Applications, 199, 103383.https://doi.org/10.1016/j.jnca.2022.103383
  2. Gupta, H., & Agarwal, A. (2024). Deep Reinforcement Learning for Offloading and Scheduling in Fog Computing Networks. IEEE Transactions on Cloud Computing. https://doi.org/10.1109/TCC.2024.000765
  3. Mollah, M. M., & Reaz, M. B. I. (2020). Fog Computing in Internet of Things: A Survey on Security, Privacy, and Performance. Future Generation Computer Systems, 108, 106-127.https://doi.org/10.1016/j.future.2020.03.009
  4. Nguyen, L. T., & Nguyen, H. S. (2021). A hybrid deep learning approach for IoT task offloading in fog computing. IEEE Internet of Things Journal, 8(12), 9761-9773. https://doi.org/10.1109/JIOT.2021.3076356
  5. Patil, S. M., & Chidambaram, R. (2023). Optimized Reinforcement Learning for Task Offloading in Fog Computing: Challenges and Opportunities. International Journal of Cloud Computing and Services Science, 12(1), 1-14. https://doi.org/10.11591/ijccs.2023.12101
  6. Kumar, A., & Gupta, A. (2022). Task Scheduling in IoT-Fog Environments Using Deep Reinforcement Learning. IEEE Access, 10, 52813-52824. https://doi.org/10.1109/ACCESS.2022.3186273
  7. Zeng, X., & Zhang, Y. (2021). Hybrid AI-based Solutions for Resource Management in Fog Computing. IEEE Transactions on Network and Service Management, 18(2), 2383-2396.https://doi.org/10.1109/TNSM.2021.3081002
  8. Alharbi, H. F., & Alturise, F. (2024). Performance Optimization of IoT Devices Using Fog Computing and Deep Learning. Future Internet, 16(2), 45. https://doi.org/10.3390/fi16020045
  9. Hossain, M. S., & Kaur, K. (2020). Data Offloading in Fog Computing for Efficient IoT Services. Computer Networks, 177, 107283. https://doi.org/10.1016/j.comnet.2020.107283
  10. Ahmad, A., & Yousaf, M. (2023). A Reinforcement Learning-Based Framework for Task Offloading in Fog Computing. Journal of Cloud Computing: Advances, Systems and Applications, 12(1), 98-112. https://doi.org/10.1186/s13677-023-00334-5
  11. Zhang, C., & Liu, Y. (2022). An Integrated Deep Learning Approach for Fog Computing Resource Management. Journal of Cloud Computing and Big Data, 3(1), 1-15. https://doi.org/10.1186/s40648-022-00101-3
  12. Guo, Y., & Zhao, Y. (2021). Adaptive Resource Allocation in Fog Computing: A Hybrid Deep Q-Learning Approach. Future Internet, 13(6), 156. https://doi.org/10.3390/fi13060156
  13. Pradhan, R., & Rani, S. (2024). Smart Resource Management in Fog Computing Using Deep Learning Algorithms. Soft Computing, 28(1), 205-217. https://doi.org/10.1007/s00542-023-07295-2
  14. Rashid, S., & Ibrahim, H. (2020). Efficient Data Processing in IoT-based Fog Networks Using Hybrid Deep Learning. IEEE Internet of Things Journal, 7(8), 7463-7475. https://doi.org/10.1109/JIOT.2020.2995604
  15. Ramya, R., & Ramamoorthy, S. (2024). Hybrid Fog-Edge-IoT architecture for real-time data monitoring. International Journal of Intelligent Engineering and Systems, 17(1). https://doi.org/10.22266/ijies2024.0229.22
  16. Abirami, R., & Poovammal, E. (2024). HAWKFOG—An enhanced deep learning framework for the Fog-IoT environment. Frontiers in Artificial Intelligence, 7, Article 1354742. https://doi.org/10.3389/frai.2024.1354742
  17. K. D. Singh and P. D. Singh, “Machine Learning in Robotics with Fog/Cloud Computing and IoT”, EAI Endorsed Trans AI Robotics, vol. 2, Dec. 2023.
  18. Chakraborty, A., Kumar, M., & Chaurasia, N. (2023). Secure framework for IoT applications using deep learning in fog computing. Journal of Information Security and Applications, 77, 103569. https://doi.org/10.1016/j.jisa.2023.103569
  19. A. Elhadad, F. Alanazi, A. I. Taloba, and A. Abozeid, “Fog computing service in the healthcare monitoring system for managing the real-time notification”, Journal of Healthcare Engineering, pp. 1-12, 2022.
  20. Narayana, V.L. and Patibandla, R.S.M.L. (2021). An Efficient Fog-Based Model for Secured Data Communication. In Integration of Cloud Computing with Internet of Things (eds M. Mangla, S. Satpathy, B. Nayak and S.N. Mohanty). https://doi.org/10.1002/9781119769323.ch3.
  21. Lei Zhang, Jie Liu, Fuquan Zhang, and Yu Mao. 2021. Distributed Fog Computing Based on Improved LT codes for Deep Learning in Web of Things. In Companion Proceedings of the Web Conference 2021 (WWW '21). Association for Computing Machinery, New York, NY, USA, 57–62. https://doi.org/10.1145/3442442.3451140
  22. M. Abdel-Basset, R. Mohamed, M. Elhoseny, A. K. Bashir, A. Jolfaei and N. Kumar, "Energy-Aware Marine Predators Algorithm for Task Scheduling in IoT-Based Fog Computing Applications," in IEEE Transactions on Industrial Informatics, vol. 17, no. 7, pp. 5068-5076, July 2021, doi: 10.1109/TII.2020.3001067.
  23. Bhandari S, Ranjan N, Khan P, Kim H, Hong Y-S. Deep Learning-Based Content Caching in the Fog Access Points. Electronics. 2021; 10(4):512. https://doi.org/10.3390/electronics10040512
  24. Shafiqur Rahman GM, Dang T, Ahmed M. Deep reinforcement learning based computation offloading and resource allocation for low-latency fog radio access networks. Intelligent and Converged Networks, 2020, 1(3): 243-257. https://doi.org/10.23919/ICN.2020.0020
  25. Abdulazeez, Dezheen & Askar, Shavan. (2023). Offloading mechanisms based on reinforcement learning and deep learning algorithms in the fog computing environment: A comprehensive review. IEEE Access. PP. 1-1. 10.1109/ACCESS.2023.3241881.
Language: English
Page range: 106 - 119
Submitted on: Sep 6, 2024
Accepted on: Oct 15, 2024
Published on: Feb 24, 2025
Published by: Future Sciences For Digital Publishing
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Sharan Kumar, Venkata Ramana Kaneti, Vandana Sharma, published by Future Sciences For Digital Publishing
This work is licensed under the Creative Commons Attribution 4.0 License.