References
- Abbott, A. L., Alvarez-Saavedra, E., Miska, E. A., Lau, N. C., Bartel, D. P., Horvitz, H. R., and Ambros, V. 2005. The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Developmental Cell 9:403–414. doi: 10.1016/j.devcel.2005.07.009
- Ajila, V., Colley, L., Ste-Croix, D. T., Nissan, N., Cober, E. R., Mimee, B., Samanfar, B., and Green, J. R. 2023a. Species-specific microRNA discovery and target prediction in the soybean cyst nematode. Scientific Reports 13:17657. doi: 10.1038/s41598-023-44469-w
- Ajila, V., Colley, L., Ste-Croix, D. T., Nissan, N., Golshani, A., Cober, E. R., Mimee, B., Samanfar, B., and Green, J. R. 2023b. P-TarPmiR accurately predicts plant-specific miRNA targets. Scientific Reports 13:332. doi: 10.1038/s41598-022-27283-8
- An, J., Lai, J., Sajjanhar, A., Lehman, M. L., and Nelson, C. C. 2014. miRPlant: An integrated tool for identification of plant miRNA from RNA sequencing data. BMC Bioinformatics 15:275. doi: 10.1186/1471-2105-15-275
- Aparicio-Puerta, E., Gómez-Martín, C., Giannoukakos, S., Medina, J. M., Scheepbouwer, C., García-Moreno, A., Carmona-Saez, P., Fromm, B., Pegtel, M., Keller, A., Marchal, J. A., and Hackenberg, M. 2022. sRNAbench and sRNAtoolbox 2022 update: Accurate miRNA and sncRNA profiling for model and non-model organisms. Nucleic Acids Research 50:W710–W717. doi: 10.1093/nar/gkac363
- Arroyo, J. D., Chevillet, J. R., Kroh, E. M., Ruf, I. K., Pritchard, C. C., Gibson, D. F., Mitchell, P. S., Bennett, C. F., Pogosova-Agadjanyan, E. L., Stirewalt, D. L., Tait, J. F., and Tewari, M. 2011. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proceedings of the National Academy of Sciences of the United States of America 108:5003–5008. doi: 10.1073/pnas.1019055108
- Axtell, M. J. 2013. ShortStack: Comprehensive annotation and quantification of small RNA genes. RNA 19:740–751. doi: 10.1261/rna.035279.112
- Betel, D., Koppal, A., Agius, P., Sander, C., and Leslie, C. 2010. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biology 11:R90. doi: 10.1186/gb-2010-11-8-r90
- Bologna, N. G., Iselin, R., Abriata, L. A., Sarazin, A., Pumplin, N., Jay, F., Grentzinger, T., Dal Peraro, M., and Voinnet, O. 2018. Nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant microRNA pathway. Molecular Cell 69:709–719.e5. doi: 10.1016/j.molcel.2018.01.007
- Brioudes, F., Jay, F., Sarazin, A., Grentzinger, T., Devers, E. A., and Voinnet, O. 2021. HASTY, the Arabidopsis EXPORTIN5 ortholog, regulates cell-to-cell and vascular microRNA movement. The EMBO Journal 40:e107455. doi: 10.15252/embj.2020107455
- Buck, A. H., Coakley, G., Simbari, F., McSorley, H. J., Quintana, J. F., Le Bihan, T., Kumar, S., Abreu-Goodger, C., Lear, M., Harcus, Y., Ceroni, A., Babayan, S. A., Blaxter, M., Ivens, A., and Maizels, R. M. 2014. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nature Communications 5:5488. doi: 10.1038/ncomms6488
- Cai, Q., He, B., Wang, S., Fletcher, S., Niu, D., Mitter, N., Birch, P. R. J., and Jin, H. 2021. Message in a bubble: Shuttling small RNAs and proteins between cells and interacting organisms using extracellular vesicles. Annual Review of Plant Biology 72:497–524. doi: 10.1146/annurev-arplant-081720-010616
- Carroll, A. P., Goodall, G. J., and Liu, B. 2014. Understanding principles of miRNA target recognition and function through integrated biological and bioinformatics approaches. Wiley Interdisciplinary Reviews RNA 5:361–379. doi: 10.1002/wrna.1217
- Chen, X., Liang, H., Zhang, J., Zen, K., and Zhang, C.-Y. 2012. Secreted microRNAs: A new form of intercellular communication. Trends in Cell Biology 22:125–132. doi: 10.1016/j.tcb.2011.12.001
- Chowdhury, S., Sais, D., Donnelly, S., and Tran, N. 2024. The knowns and unknowns of helminth–host mirna cross-kingdom communication. Trends in Parasitology 40:176–191. 10.1016/j.pt.2023.12.003
- Clarke, A. W., Høye, E., Hembrom, A. A., Paynter, V. M., Vinther, J., Wyrożemski, Ł, Biryukova, I., Formaggioni, A., Ovchinnikov, V., Herlyn, H., Pierce, A., Wu, C., Aslanzadeh, M., Cheneby, J., Martinez, P., Friedländer, M. R., Hovig, E., Hackenberg, M., Umu, S. U., Johansen, M., Peterson, K. J., and Fromm, B. 2025. MirGeneDB 3.0: Improved taxonomic sampling, uniform nomenclature of novel conserved microRNA families and updated covariance models. Nucleic Acids Research 53:D116–D128. doi: 10.1093/nar/gkae1094
- Cui, S., Yu, S., Huang, H. Y., Lin, Y. C. D., Huang, Y., Zhang, B., Xiao, J., Zuo, H., Wang, J., Li, Z., Li, G., Ma, J., Chen, B., Zhang, H., Fu, J., Wang, L., and Huang, H. D. 2025. miRTarBase 2025: Updates to the collection of experimentally validated microRNA–target interactions. Nucleic Acids Research 53:D147–D156. doi: 10.1093/nar/gkae1072
- Dai, X., and Zhao, P. X. 2011. psRNATarget: A plant small RNA target analysis server. Nucleic Acids Research 39:W155–W159. doi: 10.1093/nar/gkr319
- de Wit, E., Linsen, S. E. V., Cuppen, E., and Berezikov, E. 2009. Repertoire and evolution of miRNA genes in four divergent nematode species. Genome Research 19:2064–2074. doi: 10.1101/gr.093781.109
- Ding, X., Ye, J., Wu, X., Huang, L., Zhu, L., and Lin, S. 2015. Deep sequencing analyses of pine wood nematode Bursaphelenchus xylophilus microRNAs reveal distinct miRNA expression patterns during the pathological process of pine wilt disease. Gene 555:346–356. doi: 10.1016/j.gene.2014.11.030
- Dong, Z., Han, M.-H., and Fedoroff, N. 2008. The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proceedings of the National Academy of Sciences of the United States of America 105:9970–9975. doi: 10.1073/pnas.0803356105
- Eves-van den Akker, S. 2021. Plant–nematode interactions. Current Opinion in Plant Biology 62:102035. doi: 10.1016/j.pbi.2021.102035
- Fabbri, M., Paone, A., Calore, F., Galli, R., Gaudio, E., Santhanam, R., Lovat, F., Fadda, P., Mao, C., Nuovo, G. J., Zanesi, N., Crawford, M., Ozer, G. H., Wernicke, D., Alder, H., Caligiuri, M. A., Nana-Sinkam, P., Perrotti, D., and Croce, C. M. 2012. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proceedings of the National Academy of Sciences of the United States of America 109:E2110–E2116. doi: 10.1073/pnas.1209414109
- Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811. doi: 10.1038/35888
- Friedländer, M. R., Mackowiak, S. D., Li, N., Chen, W., and Rajewsky, N. 2012. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Research 40:37–52. doi: 10.1093/nar/gkr688
- Gruber, A. R., Lorenz, R., Bernhart, S. H., Neuböck, R., and Hofacker, I. L. 2008. The Vienna RNA Websuite. Nucleic Acids Research 36:W70–W74. doi: 10.1093/nar/gkn188
- Gualtieri, C., Leonetti, P., and Macovei, A. 2020. Plant miRNA cross-kingdom transfer targeting parasitic and mutualistic organisms as a tool to advance modern agriculture. Frontiers in Plant Science 11:930. doi: 10.3389/fpls.2020.00930
- Gu, T., Zhao, X., Barbazuk, W. B., and Lee, J.-H. 2021. miTAR: A hybrid deep learning-based approach for predicting miRNA targets. BMC Bioinformatics 22:96. doi: 10.1186/s12859-021-04026-6
- Guo, Z., Kuang, Z., Wang, Y., Zhao, Y., Tao, Y., Cheng, C., Yang, J., Lu, X., Hao, C., Wang, T., Cao, X., Wei, J., Li, L., and Yang, X. 2020. PmiREN: A comprehensive encyclopedia of plant miRNAs. Nucleic Acids Research 48:D1114–D1121. doi: 10.1093/nar/gkz894
- Hackenberg, M., Rodríguez-Ezpeleta, N., and Aransay, A. M. 2011. miRanalyzer: An update on the detection and analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids Research 39:W132–W138. doi: 10.1093/nar/gkr247
- He, B., Wang, H., Liu, G., Chen, A., Calvo, A., Cai, Q., and Jin, H. 2023. Fungal small RNAs ride in extracellular vesicles to enter plant cells through clathrin-mediated endocytosis. Nature Communications 14:4383. doi: 10.1038/s41467-023-40093-4
- Hewezi, T. 2020. Epigenetic mechanisms in nematode–plant interactions. Annual Review of Phytopathology 58:119–138. doi: 10.1146/annurev-phyto-010820-012805
- Huang, Q. X., Cheng, X. Y., Mao, Z. C., Wang, Y. S., Zhao, L. L., Yan, X., Ferris, V. R., Xu, R. M., and Xie, B. Y. 2010. MicroRNA discovery and analysis of pinewood nematode Bursaphelenchus xylophilus by deep sequencing. PLoS ONE 5:e13271. doi: 10.1371/journal.pone.0013271
- Jaubert-Possamai, S., Noureddine, Y., and Favery, B. 2019. MicroRNAs, new players in the plant–nematode interaction. Frontiers in Plant Science 10:1180. doi: 10.3389/fpls.2019.01180
- Jayasundara, S., Lokuge, S., Ihalagedara, P., and Herath, D. 2021. Machine learning for plant microRNA prediction: A systematic review. arXiv:2106.15159. doi: 10.48550/arXiv.2106.15159
- Kalvari, I., Nawrocki, E. P., Ontiveros-Palacios, N., Argasinska, J., Lamkiewicz, K., Marz, M., Griffiths-Jones, S., Toffano-Nioche, C., Gautheret, D., Weinberg, Z., Rivas, E., Eddy, S. R., Finn, R. D., Bateman, A., and Petrov, A. I. 2021. Rfam 14: Expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Research 49:D192–D200. doi: 10.1093/nar/gkaa1047
- Kantor, C., Eisenback, J. D., and Kantor, M. 2024. Biosecurity risks to human food supply associated with plant-parasitic nematodes. Frontiers in Plant Science 15:1404335. doi: 10.3389/fpls.2024.1404335
- Kaur, P., Shukla, N., Joshi, G., VijayaKumar, C., Jagannath, A., Agarwal, M., Goel, S., and Kumar, A. 2017. Genome-wide identification and characterization of miRNAome from tomato (Solanum lycopersicum) roots and root-knot nematode (Meloidogyne incognita) during susceptible interaction. PLoS ONE 12:e0175178. doi: 10.1371/journal.pone.0175178
- Keerthikumar, S., Chisanga, D., Ariyaratne, D., Al Saffar, H., Anand, S., Zhao, K., Samuel, M., Pathan, M., Jois, M., Chilamkurti, N., Gangoda, L., and Mathivanan, S. 2016. ExoCarta: A web-based compendium of exosomal cargo. Journal of Molecular Biology 428:688–692. doi: 10.1016/j.jmb.2015.09.019
- Koch, L. 2014. easiRNAs—guardians of the plant genome. Nature Reviews Genetics 15:288–288. doi: 10.1038/nrg3726
- Kotagama, K., and McJunkin, K. 2024. Recent advances in understanding microRNA function and regulation in C. elegans. Seminars in Cell and Developmental Biology 154:4–13. doi: 10.1016/j.semcdb.2023.03.011
- Kozomara, A., Birgaoanu, M., and Griffiths-Jones, S. 2019. miRBase: From microRNA sequences to function. Nucleic Acids Research 47:D155–D162. doi: 10.1093/nar/gky1141
- Krüger, J., and Rehmsmeier, M. 2006. RNAhybrid: MicroRNA target prediction easy, fast and flexible. Nucleic Acids Research 34:W451–454. doi: 10.1093/nar/gkl243
- Lee, R. C., Feinbaum, R. L., and Ambros, V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854. doi: 10.1016/0092-8674(93)90529-Y
- Leonetti, P., Dallera, D., De Marchi, D., Candito, P., Pasotti, L., and Macovei, A. 2024. Exploring the putative microRNAs cross-kingdom transfer in Solanum lycopersicum-Meloidogyne incognita interactions. Frontiers in Plant Science 15:1383986. doi: 10.3389/fpls.2024.1383986
- Lewis, B. P., Burge, C. B., and Bartel, D. P. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20. doi: 10.1016/j.cell.2004.12.035
- Lian, Y., Wei, H., Wang, J., Lei, C., Li, H., Li, J., Wu, Y., Wang, S., Zhang, H., Wang, T., Du, P., Guo, J., and Lu, W. 2019. Chromosome-level reference genome of X12, a highly virulent race of the soybean cyst nematode Heterodera glycines. Molecular Ecology Resources 19:1637–1646. doi: 10.1111/1755-0998.13068
- Liang, H., Zen, K., Zhang, J., Zhang, C. Y., and Chen, X. 2013. New roles for microRNAs in cross-species communication. RNA biology 10:367–370. doi: 10.4161/rna.23663
- Lin, H., and Spradling, A. C. 1997. A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124:2463–2476. doi: 10.1242/dev.124.12.2463
- Liu, H., Nichols, R. L., Qiu, L., Sun, R., Zhang, B., and Pan, X. 2019. Small RNA sequencing reveals regulatory roles of microRNAs in the development of Meloidogyne incognita. International Journal of Molecular Sciences 20:5466. doi: 10.3390/ijms20215466
- Liu, L., Liu, E., Hu, Y., Li, S., Zhang, S., Chao, H., Hu, Y., Zhu, Y., Chen, Y., Xie, L., Shen, Y., Wu, L., and Chen, M. 2025. ncPlantDB: A plant ncRNA database with potential ncPEP information and cell type-specific interaction. Nucleic Acids Research 53:D1587–D1594. doi: 10.1093/nar/gkae1017
- Liu, Y., Teng, C., Xia, R., and Meyers, B. C. 2020. PhasiRNAs in plants: Their biogenesis, genic sources, and roles in stress responses, development, and reproduction. The Plant Cell 32:3059–3080. doi: 10.1105/tpc.20.00335
- Li, J., Yang, Z., Yu, B., Liu, J., and Chen, X. 2005. Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Current Biology 15:1501–1507. doi: 10.1016/j.cub.2005.07.029
- Mallory, A., and Vaucheret, H. 2010. Form, function, and regulation of Argonaute proteins. The Plant Cell 22:3879–3889. doi: 10.1105/tpc.110.080671
- Mani, V., Assefa, A. D., and Hahn, B.-S. 2021. Transcriptome analysis and miRNA target profiling at various stages of root-knot nematode Meloidogyne incognita development for identification of potential regulatory networks. International Journal of Molecular Sciences 22:7442. doi: 10.3390/ijms22147442
- Marks, N. D., Winter, A. D., Gu, H. Y., Maitland, K., Gillan, V., Ambroz, M., Martinelli, A., Laing, R., MacLellan, R., Towne, J., Roberts, B., Hanks, E., Devaney, E., and Britton, C. 2019. Profiling microRNAs through development of the parasitic nematode Haemonchus identifies nematode-specific miRNAs that suppress larval development. Scientific Reports 9:17594. doi: 10.1038/s41598-019-54154-6
- Meng, X., Jin, W., and Wu, F. 2020. Novel tomato miRNA miR1001 initiates cross-species regulation to suppress the conidiospore germination and infection virulence of Botrytis cinerea in vitro. Gene 759:145002. doi: 10.1016/j.gene.2020.145002
- O’Brien, J., Hayder, H., Zayed, Y., and Peng, C. 2018. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Frontiers in Endocrinology 9:402. doi: 10.3389/fendo.2018.00402
- +Piatek, M. J., and Werner, A. 2014. Endogenous siRNAs: Regulators of internal affairs. Biochemical Society Transactions 42:1174–1179. doi: 10.1042/BST20140068
- Rambani, A., Hu, Y., Piya, S., Long, M., Rice, J. H., Pantalone, V., and Hewezi, T. 2020. Identification of differentially methylated miRNA genes during compatible and incompatible interactions between soybean and soybean cyst nematode. Molecular Plant-Microbe Interactions: MPMI 33:1340–1352. doi: 10.1094/MPMI-07-20-0196-R
- Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., Horvitz, H. R., and Ruvkun, G. 2000. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906. doi: 10.1038/35002607
- Rogers, K., and Chen, X. 2013. Biogenesis, turnover, and mode of action of plant microRNAs. The Plant Cell 25:2383–2399. doi: 10.1105/tpc.113.113159
- Santangelo, L., Giurato, G., Cicchini, C., Montaldo, C., Mancone, C., Tarallo, R., Battistelli, C., Alonzi, T., Weisz, A., and Tripodi, M. 2016. The RNA-binding protein SYNCRIP is a component of the hepatocyte exosomal machinery controlling microRNA sorting. Cell Reports 17:799–808. doi: 10.1016/j.celrep.2016.09.031
- Siddique, S., and Grundler, F. M. 2018. Parasitic nematodes manipulate plant development to establish feeding sites. Current Opinion in Microbiology 46:102–108. doi: 10.1016/j.mib.2018.09.004
- Song, L., Axtell, M. J., and Fedoroff, N. V. 2010. RNA secondary structural determinants of miRNA precursor processing in Arabidopsis. Current Biology 20:37–41. doi: 10.1016/j.cub.2009.10.076
- Ste-Croix, D. T., Bélanger, R. R., and Mimee, B. 2023. Characterization of microRNAs in the cyst nematode Heterodera glycines identifies possible candidates involved in cross-kingdom interactions with its host Glycine max. RNA Biology 20:614–628. doi: 10.1080/15476286.2023.2244790
- Subramanian, P., Choi, I. C., Mani, V., Park, J., Subramaniyam, S., Choi, K. H., Sim, J. S., Lee, C. M., Koo, J. C., and Hahn, B. S. 2016. Stage-wise identification and analysis of miRNA from root-knot nematode Meloidogyne incognita. International Journal of Molecular Sciences 17:1758. doi: 10.3390/ijms17101758
- Sun, Y. H., Lee, B., and Li, X. Z. 2022. The birth of piRNAs: How mammalian piRNAs are produced, originated, and evolved. Mammalian Genome 33:293–311. doi: 10.1007/s00335-021-09927-8
- Tian, Z., Cai, Y., Zhu, M., Wang, L., Liu, Q., Li, Q., Gao, X., Zheng, J., Lin, B., Zhuo, K., and Han, S. 2025. mgr-mir-228-regulated transthyretin-like protein in Meloidogyne graminicola suppresses ROS generation and enhances parasitism. Phytopathology Research 7:39. doi: 10.1186/s42483-025-00328-2
- Tian, Z., Zhou, J., Zheng, J., and Han, S. 2023. mgr-mir-9 implicates Meloidogyne graminicola infection in rice by targeting the effector MgPDI. Journal of Integrative Agriculture 22:1445–1454. doi: 10.1016/j.jia.2022.08.127
- Turchinovich, A., Samatov, T. R., Tonevitsky, A. G., and Burwinkel, B. 2013. Circulating miRNAs: Cell–cell communication function? Frontiers in Genetics 4:119. doi: 10.3389/fgene.2013.00119
- Turchinovich, A., Weiz, L., Langheinz, A., and Burwinkel, B. 2011. Characterization of extracellular circulating microRNA. Nucleic Acids Research 39:7223–7233. doi: 10.1093/nar/gkr254
- Vieira, P., and Gleason, C. 2019. Plant-parasitic nematode effectors–insights into their diversity and new tools for their identification. Current Opinion in Plant Biology 50:37–43. doi: 10.1016/j.pbi.2019.02.007
- Wagner, J., Riwanto, M., Besler, C., Knau, A., Fichtlscherer, S., Röxe, T., Zeiher, A. M., Landmesser, U., and Dimmeler, S. 2013. Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arteriosclerosis, Thrombosis, and Vascular Biology 33:1392–1400. doi: 10.1161/ATVBAHA.112.300741
- Wang, B., Sun, Y., Song, N., Zhao, M., Liu, R., Feng, H., Wang, X., and Kang, Z. 2017. Puccinia striiformis f. sp. tritici microRNA-like RNA 1 (Pst-milR1), an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene. The New Phytologist 215:338–350. doi: 10.1111/nph.14577
- Wang, J., Mei, J., and Ren, G. 2019. Plant microRNAs: Biogenesis, homeostasis, and degradation. Frontiers in Plant Science 10:360. doi: 10.3389/fpls.2019.00360
- Wang, W., Liu, D., Zhang, X., Chen, D., Cheng, Y., and Shen, F. 2018. Plant microRNAs in cross-kingdom regulation of gene expression. International Journal of Molecular Sciences 19:2007. doi: 10.3390/ijms19072007
- Wang, Y., Mao, Z., Yan, J., Cheng, X., Liu, F., Xiao, L., Dai, L., Luo, F., and Xie, B. 2015. Identification of microRNAs in Meloidogyne incognita using deep sequencing. PLoS ONE 10:e0133491. doi: 10.1371/journal.pone.0133491
- Weiberg, A., Wang, M., Lin, F.-M., Zhao, H., Zhang, Z., Kaloshian, I., Huang, H.-D., and Jin, H. 2013. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–123. doi: 10.1126/science.1239705
- Wightman, B., Ha, I., and Ruvkun, G. 1993. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862. doi: 10.1016/0092-8674(93)90530-4
- Wu, F., Huang, Y., Jiang, W., and Jin, W. 2023. Genome-wide identification and validation of tomato-encoded sRNA as the cross-species antifungal factors targeting the virulence genes of Botrytis cinerea. Frontiers in Plant Science 14:1072181. doi: 10.3389/fpls.2023.1072181
- Wu, Y., Wei, B., Liu, H., Li, T., and Rayner, S. 2011. MiRPara: A SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences. BMC Bioinformatics 12:107. doi: 10.1186/1471-2105-12-107
- Xiao, F., Zuo, Z., Cai, G., Kang, S., Gao, X., and Li, T. 2009. miRecords: An integrated resource for microRNA-target interactions. Nucleic Acids Research 37:D105–D110. doi: 10.1093/nar/gkn851
- Xu, J., Chen, Q., Zen, K., Zhang, C., and Zhang, Q. 2013. Synaptosomes secrete and uptake functionally active microRNAs via exocytosis and endocytosis pathways. Journal of Neurochemistry 124:15–25. doi: 10.1111/jnc.12057
- Yang, X., Fishilevich, E., German, M. A., Gandra, P., McEwan, R. E., Billion, A., Knorr, E., Vilcinskas, A., and Narva, K. E. 2021. Elucidation of the microRNA transcriptome in western corn rootworm reveals its dynamic and evolutionary complexity. Genomics, Proteomics and Bioinformatics 19:800–814. doi: 10.1016/j.gpb.2019.03.008
- Yang, X., and Li, L. 2011. miRDeep-P: A computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics (Oxford, England) 27:2614–2615. doi: 10.1093/bioinformatics/btr430
- Yoshikawa, M. 2013. Biogenesis of trans-acting siRNAs, endogenous secondary siRNAs in plants. Genes and Genetic Systems 88:77–84. doi: 10.1266/ggs.88.77
- Zhang, J., Li, S., Li, L., Li, M., Guo, C., Yao, J., and Mi, S. 2015. Exosome and exosomal microRNA: Trafficking, sorting, and function. Genomics, Proteomics and Bioinformatics 13:17–24. doi: 10.1016/j.gpb.2015.02.001
- Zhang, L., Hou, D., Chen, X., Li, D., Zhu, L., Zhang, Y., Li, J., Bian, Z., Liang, X., Cai, X., Yin, Y., Wang, C., Zhang, T., Zhu, D., Zhang, D., Xu, J., Chen, Q., Ba, Y., Liu, J., Wang, Q., Chen, J., Wang, J., Wang, M., Zhang, Q., Zhang, J., Zen, K., and Zhang, C.-Y. 2012. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: Evidence of cross-kingdom regulation by microRNA. Cell Research 22:107–126. doi: 10.1038/cr.2011.158
- Zhang, T., Zhao, Y. L., Zhao, J. H., Wang, S., Jin, Y., Chen, Z. Q., Fang, Y. Y., Hua, C. L., Ding, S. W., and Guo, H. S. 2016a. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nature Plants 2:1–6. doi: 10.1038/nplants.2016.153
- Zhang, Y., Wang, Y., Xie, F., Li, C., Zhang, B., Nichols, R. L., and Pan, X. 2016b. Identification and characterization of microRNAs in the plant parasitic root-knot nematode Meloidogyne incognita using deep sequencing. Functional and Integrative Genomics 16:127–142. doi: 10.1007/s10142-015-0472-x
- Zhao, C., Sun, X., and Li, L. 2019. Biogenesis and function of extracellular miRNAs. ExRNA 1:38. doi: 10.1186/s41544-019-0039-4
- Zhou, G., Zhou, Y., and Chen, X. 2017. New insight into inter-kingdom communication: horizontal transfer of mobile small RNAs. Frontiers in microbiology 8, 768. doi: 10.3389/fmicb.2017.00768