Abbott, A. L., Alvarez-Saavedra, E., Miska, E. A., Lau, N. C., Bartel, D. P., Horvitz, H. R., and Ambros, V. 2005. The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Developmental Cell 9:403–414. doi: 10.1016/j.devcel.2005.07.009
Ajila, V., Colley, L., Ste-Croix, D. T., Nissan, N., Cober, E. R., Mimee, B., Samanfar, B., and Green, J. R. 2023a. Species-specific microRNA discovery and target prediction in the soybean cyst nematode. Scientific Reports 13:17657. doi: 10.1038/s41598-023-44469-w
Ajila, V., Colley, L., Ste-Croix, D. T., Nissan, N., Golshani, A., Cober, E. R., Mimee, B., Samanfar, B., and Green, J. R. 2023b. P-TarPmiR accurately predicts plant-specific miRNA targets. Scientific Reports 13:332. doi: 10.1038/s41598-022-27283-8
An, J., Lai, J., Sajjanhar, A., Lehman, M. L., and Nelson, C. C. 2014. miRPlant: An integrated tool for identification of plant miRNA from RNA sequencing data. BMC Bioinformatics 15:275. doi: 10.1186/1471-2105-15-275
Aparicio-Puerta, E., Gómez-Martín, C., Giannoukakos, S., Medina, J. M., Scheepbouwer, C., García-Moreno, A., Carmona-Saez, P., Fromm, B., Pegtel, M., Keller, A., Marchal, J. A., and Hackenberg, M. 2022. sRNAbench and sRNAtoolbox 2022 update: Accurate miRNA and sncRNA profiling for model and non-model organisms. Nucleic Acids Research 50:W710–W717. doi: 10.1093/nar/gkac363
Arroyo, J. D., Chevillet, J. R., Kroh, E. M., Ruf, I. K., Pritchard, C. C., Gibson, D. F., Mitchell, P. S., Bennett, C. F., Pogosova-Agadjanyan, E. L., Stirewalt, D. L., Tait, J. F., and Tewari, M. 2011. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proceedings of the National Academy of Sciences of the United States of America 108:5003–5008. doi: 10.1073/pnas.1019055108
Betel, D., Koppal, A., Agius, P., Sander, C., and Leslie, C. 2010. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biology 11:R90. doi: 10.1186/gb-2010-11-8-r90
Bologna, N. G., Iselin, R., Abriata, L. A., Sarazin, A., Pumplin, N., Jay, F., Grentzinger, T., Dal Peraro, M., and Voinnet, O. 2018. Nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant microRNA pathway. Molecular Cell 69:709–719.e5. doi: 10.1016/j.molcel.2018.01.007
Brioudes, F., Jay, F., Sarazin, A., Grentzinger, T., Devers, E. A., and Voinnet, O. 2021. HASTY, the Arabidopsis EXPORTIN5 ortholog, regulates cell-to-cell and vascular microRNA movement. The EMBO Journal 40:e107455. doi: 10.15252/embj.2020107455
Buck, A. H., Coakley, G., Simbari, F., McSorley, H. J., Quintana, J. F., Le Bihan, T., Kumar, S., Abreu-Goodger, C., Lear, M., Harcus, Y., Ceroni, A., Babayan, S. A., Blaxter, M., Ivens, A., and Maizels, R. M. 2014. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nature Communications 5:5488. doi: 10.1038/ncomms6488
Cai, Q., He, B., Wang, S., Fletcher, S., Niu, D., Mitter, N., Birch, P. R. J., and Jin, H. 2021. Message in a bubble: Shuttling small RNAs and proteins between cells and interacting organisms using extracellular vesicles. Annual Review of Plant Biology 72:497–524. doi: 10.1146/annurev-arplant-081720-010616
Carroll, A. P., Goodall, G. J., and Liu, B. 2014. Understanding principles of miRNA target recognition and function through integrated biological and bioinformatics approaches. Wiley Interdisciplinary Reviews RNA 5:361–379. doi: 10.1002/wrna.1217
Chen, X., Liang, H., Zhang, J., Zen, K., and Zhang, C.-Y. 2012. Secreted microRNAs: A new form of intercellular communication. Trends in Cell Biology 22:125–132. doi: 10.1016/j.tcb.2011.12.001
Chowdhury, S., Sais, D., Donnelly, S., and Tran, N. 2024. The knowns and unknowns of helminth–host mirna cross-kingdom communication. Trends in Parasitology 40:176–191. 10.1016/j.pt.2023.12.003
Clarke, A. W., Høye, E., Hembrom, A. A., Paynter, V. M., Vinther, J., Wyrożemski, Ł, Biryukova, I., Formaggioni, A., Ovchinnikov, V., Herlyn, H., Pierce, A., Wu, C., Aslanzadeh, M., Cheneby, J., Martinez, P., Friedländer, M. R., Hovig, E., Hackenberg, M., Umu, S. U., Johansen, M., Peterson, K. J., and Fromm, B. 2025. MirGeneDB 3.0: Improved taxonomic sampling, uniform nomenclature of novel conserved microRNA families and updated covariance models. Nucleic Acids Research 53:D116–D128. doi: 10.1093/nar/gkae1094
de Wit, E., Linsen, S. E. V., Cuppen, E., and Berezikov, E. 2009. Repertoire and evolution of miRNA genes in four divergent nematode species. Genome Research 19:2064–2074. doi: 10.1101/gr.093781.109
Ding, X., Ye, J., Wu, X., Huang, L., Zhu, L., and Lin, S. 2015. Deep sequencing analyses of pine wood nematode Bursaphelenchus xylophilus microRNAs reveal distinct miRNA expression patterns during the pathological process of pine wilt disease. Gene 555:346–356. doi: 10.1016/j.gene.2014.11.030
Dong, Z., Han, M.-H., and Fedoroff, N. 2008. The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proceedings of the National Academy of Sciences of the United States of America 105:9970–9975. doi: 10.1073/pnas.0803356105
Fabbri, M., Paone, A., Calore, F., Galli, R., Gaudio, E., Santhanam, R., Lovat, F., Fadda, P., Mao, C., Nuovo, G. J., Zanesi, N., Crawford, M., Ozer, G. H., Wernicke, D., Alder, H., Caligiuri, M. A., Nana-Sinkam, P., Perrotti, D., and Croce, C. M. 2012. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proceedings of the National Academy of Sciences of the United States of America 109:E2110–E2116. doi: 10.1073/pnas.1209414109
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811. doi: 10.1038/35888
Friedländer, M. R., Mackowiak, S. D., Li, N., Chen, W., and Rajewsky, N. 2012. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Research 40:37–52. doi: 10.1093/nar/gkr688
Gruber, A. R., Lorenz, R., Bernhart, S. H., Neuböck, R., and Hofacker, I. L. 2008. The Vienna RNA Websuite. Nucleic Acids Research 36:W70–W74. doi: 10.1093/nar/gkn188
Gualtieri, C., Leonetti, P., and Macovei, A. 2020. Plant miRNA cross-kingdom transfer targeting parasitic and mutualistic organisms as a tool to advance modern agriculture. Frontiers in Plant Science 11:930. doi: 10.3389/fpls.2020.00930
Hackenberg, M., Rodríguez-Ezpeleta, N., and Aransay, A. M. 2011. miRanalyzer: An update on the detection and analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids Research 39:W132–W138. doi: 10.1093/nar/gkr247
He, B., Wang, H., Liu, G., Chen, A., Calvo, A., Cai, Q., and Jin, H. 2023. Fungal small RNAs ride in extracellular vesicles to enter plant cells through clathrin-mediated endocytosis. Nature Communications 14:4383. doi: 10.1038/s41467-023-40093-4
Hewezi, T. 2020. Epigenetic mechanisms in nematode–plant interactions. Annual Review of Phytopathology 58:119–138. doi: 10.1146/annurev-phyto-010820-012805
Huang, Q. X., Cheng, X. Y., Mao, Z. C., Wang, Y. S., Zhao, L. L., Yan, X., Ferris, V. R., Xu, R. M., and Xie, B. Y. 2010. MicroRNA discovery and analysis of pinewood nematode Bursaphelenchus xylophilus by deep sequencing. PLoS ONE 5:e13271. doi: 10.1371/journal.pone.0013271
Jaubert-Possamai, S., Noureddine, Y., and Favery, B. 2019. MicroRNAs, new players in the plant–nematode interaction. Frontiers in Plant Science 10:1180. doi: 10.3389/fpls.2019.01180
Kalvari, I., Nawrocki, E. P., Ontiveros-Palacios, N., Argasinska, J., Lamkiewicz, K., Marz, M., Griffiths-Jones, S., Toffano-Nioche, C., Gautheret, D., Weinberg, Z., Rivas, E., Eddy, S. R., Finn, R. D., Bateman, A., and Petrov, A. I. 2021. Rfam 14: Expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Research 49:D192–D200. doi: 10.1093/nar/gkaa1047
Kantor, C., Eisenback, J. D., and Kantor, M. 2024. Biosecurity risks to human food supply associated with plant-parasitic nematodes. Frontiers in Plant Science 15:1404335. doi: 10.3389/fpls.2024.1404335
Kaur, P., Shukla, N., Joshi, G., VijayaKumar, C., Jagannath, A., Agarwal, M., Goel, S., and Kumar, A. 2017. Genome-wide identification and characterization of miRNAome from tomato (Solanum lycopersicum) roots and root-knot nematode (Meloidogyne incognita) during susceptible interaction. PLoS ONE 12:e0175178. doi: 10.1371/journal.pone.0175178
Keerthikumar, S., Chisanga, D., Ariyaratne, D., Al Saffar, H., Anand, S., Zhao, K., Samuel, M., Pathan, M., Jois, M., Chilamkurti, N., Gangoda, L., and Mathivanan, S. 2016. ExoCarta: A web-based compendium of exosomal cargo. Journal of Molecular Biology 428:688–692. doi: 10.1016/j.jmb.2015.09.019
Kotagama, K., and McJunkin, K. 2024. Recent advances in understanding microRNA function and regulation in C. elegans. Seminars in Cell and Developmental Biology 154:4–13. doi: 10.1016/j.semcdb.2023.03.011
Kozomara, A., Birgaoanu, M., and Griffiths-Jones, S. 2019. miRBase: From microRNA sequences to function. Nucleic Acids Research 47:D155–D162. doi: 10.1093/nar/gky1141
Krüger, J., and Rehmsmeier, M. 2006. RNAhybrid: MicroRNA target prediction easy, fast and flexible. Nucleic Acids Research 34:W451–454. doi: 10.1093/nar/gkl243
Lee, R. C., Feinbaum, R. L., and Ambros, V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854. doi: 10.1016/0092-8674(93)90529-Y
Leonetti, P., Dallera, D., De Marchi, D., Candito, P., Pasotti, L., and Macovei, A. 2024. Exploring the putative microRNAs cross-kingdom transfer in Solanum lycopersicum-Meloidogyne incognita interactions. Frontiers in Plant Science 15:1383986. doi: 10.3389/fpls.2024.1383986
Lewis, B. P., Burge, C. B., and Bartel, D. P. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20. doi: 10.1016/j.cell.2004.12.035
Liang, H., Zen, K., Zhang, J., Zhang, C. Y., and Chen, X. 2013. New roles for microRNAs in cross-species communication. RNA biology 10:367–370. doi: 10.4161/rna.23663
Lin, H., and Spradling, A. C. 1997. A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124:2463–2476. doi: 10.1242/dev.124.12.2463
Liu, H., Nichols, R. L., Qiu, L., Sun, R., Zhang, B., and Pan, X. 2019. Small RNA sequencing reveals regulatory roles of microRNAs in the development of Meloidogyne incognita. International Journal of Molecular Sciences 20:5466. doi: 10.3390/ijms20215466
Liu, Y., Teng, C., Xia, R., and Meyers, B. C. 2020. PhasiRNAs in plants: Their biogenesis, genic sources, and roles in stress responses, development, and reproduction. The Plant Cell 32:3059–3080. doi: 10.1105/tpc.20.00335
Li, J., Yang, Z., Yu, B., Liu, J., and Chen, X. 2005. Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Current Biology 15:1501–1507. doi: 10.1016/j.cub.2005.07.029
Mani, V., Assefa, A. D., and Hahn, B.-S. 2021. Transcriptome analysis and miRNA target profiling at various stages of root-knot nematode Meloidogyne incognita development for identification of potential regulatory networks. International Journal of Molecular Sciences 22:7442. doi: 10.3390/ijms22147442
Marks, N. D., Winter, A. D., Gu, H. Y., Maitland, K., Gillan, V., Ambroz, M., Martinelli, A., Laing, R., MacLellan, R., Towne, J., Roberts, B., Hanks, E., Devaney, E., and Britton, C. 2019. Profiling microRNAs through development of the parasitic nematode Haemonchus identifies nematode-specific miRNAs that suppress larval development. Scientific Reports 9:17594. doi: 10.1038/s41598-019-54154-6
Meng, X., Jin, W., and Wu, F. 2020. Novel tomato miRNA miR1001 initiates cross-species regulation to suppress the conidiospore germination and infection virulence of Botrytis cinerea in vitro. Gene 759:145002. doi: 10.1016/j.gene.2020.145002
O’Brien, J., Hayder, H., Zayed, Y., and Peng, C. 2018. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Frontiers in Endocrinology 9:402. doi: 10.3389/fendo.2018.00402
+Piatek, M. J., and Werner, A. 2014. Endogenous siRNAs: Regulators of internal affairs. Biochemical Society Transactions 42:1174–1179. doi: 10.1042/BST20140068
Rambani, A., Hu, Y., Piya, S., Long, M., Rice, J. H., Pantalone, V., and Hewezi, T. 2020. Identification of differentially methylated miRNA genes during compatible and incompatible interactions between soybean and soybean cyst nematode. Molecular Plant-Microbe Interactions: MPMI 33:1340–1352. doi: 10.1094/MPMI-07-20-0196-R
Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., Horvitz, H. R., and Ruvkun, G. 2000. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906. doi: 10.1038/35002607
Santangelo, L., Giurato, G., Cicchini, C., Montaldo, C., Mancone, C., Tarallo, R., Battistelli, C., Alonzi, T., Weisz, A., and Tripodi, M. 2016. The RNA-binding protein SYNCRIP is a component of the hepatocyte exosomal machinery controlling microRNA sorting. Cell Reports 17:799–808. doi: 10.1016/j.celrep.2016.09.031
Siddique, S., and Grundler, F. M. 2018. Parasitic nematodes manipulate plant development to establish feeding sites. Current Opinion in Microbiology 46:102–108. doi: 10.1016/j.mib.2018.09.004
Song, L., Axtell, M. J., and Fedoroff, N. V. 2010. RNA secondary structural determinants of miRNA precursor processing in Arabidopsis. Current Biology 20:37–41. doi: 10.1016/j.cub.2009.10.076
Ste-Croix, D. T., Bélanger, R. R., and Mimee, B. 2023. Characterization of microRNAs in the cyst nematode Heterodera glycines identifies possible candidates involved in cross-kingdom interactions with its host Glycine max. RNA Biology 20:614–628. doi: 10.1080/15476286.2023.2244790
Subramanian, P., Choi, I. C., Mani, V., Park, J., Subramaniyam, S., Choi, K. H., Sim, J. S., Lee, C. M., Koo, J. C., and Hahn, B. S. 2016. Stage-wise identification and analysis of miRNA from root-knot nematode Meloidogyne incognita. International Journal of Molecular Sciences 17:1758. doi: 10.3390/ijms17101758
Sun, Y. H., Lee, B., and Li, X. Z. 2022. The birth of piRNAs: How mammalian piRNAs are produced, originated, and evolved. Mammalian Genome 33:293–311. doi: 10.1007/s00335-021-09927-8
Tian, Z., Zhou, J., Zheng, J., and Han, S. 2023. mgr-mir-9 implicates Meloidogyne graminicola infection in rice by targeting the effector MgPDI. Journal of Integrative Agriculture 22:1445–1454. doi: 10.1016/j.jia.2022.08.127
Turchinovich, A., Samatov, T. R., Tonevitsky, A. G., and Burwinkel, B. 2013. Circulating miRNAs: Cell–cell communication function? Frontiers in Genetics 4:119. doi: 10.3389/fgene.2013.00119
Turchinovich, A., Weiz, L., Langheinz, A., and Burwinkel, B. 2011. Characterization of extracellular circulating microRNA. Nucleic Acids Research 39:7223–7233. doi: 10.1093/nar/gkr254
Vieira, P., and Gleason, C. 2019. Plant-parasitic nematode effectors–insights into their diversity and new tools for their identification. Current Opinion in Plant Biology 50:37–43. doi: 10.1016/j.pbi.2019.02.007
Wagner, J., Riwanto, M., Besler, C., Knau, A., Fichtlscherer, S., Röxe, T., Zeiher, A. M., Landmesser, U., and Dimmeler, S. 2013. Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arteriosclerosis, Thrombosis, and Vascular Biology 33:1392–1400. doi: 10.1161/ATVBAHA.112.300741
Wang, B., Sun, Y., Song, N., Zhao, M., Liu, R., Feng, H., Wang, X., and Kang, Z. 2017. Puccinia striiformis f. sp. tritici microRNA-like RNA 1 (Pst-milR1), an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene. The New Phytologist 215:338–350. doi: 10.1111/nph.14577
Wang, W., Liu, D., Zhang, X., Chen, D., Cheng, Y., and Shen, F. 2018. Plant microRNAs in cross-kingdom regulation of gene expression. International Journal of Molecular Sciences 19:2007. doi: 10.3390/ijms19072007
Wang, Y., Mao, Z., Yan, J., Cheng, X., Liu, F., Xiao, L., Dai, L., Luo, F., and Xie, B. 2015. Identification of microRNAs in Meloidogyne incognita using deep sequencing. PLoS ONE 10:e0133491. doi: 10.1371/journal.pone.0133491
Weiberg, A., Wang, M., Lin, F.-M., Zhao, H., Zhang, Z., Kaloshian, I., Huang, H.-D., and Jin, H. 2013. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–123. doi: 10.1126/science.1239705
Wightman, B., Ha, I., and Ruvkun, G. 1993. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862. doi: 10.1016/0092-8674(93)90530-4
Wu, F., Huang, Y., Jiang, W., and Jin, W. 2023. Genome-wide identification and validation of tomato-encoded sRNA as the cross-species antifungal factors targeting the virulence genes of Botrytis cinerea. Frontiers in Plant Science 14:1072181. doi: 10.3389/fpls.2023.1072181
Wu, Y., Wei, B., Liu, H., Li, T., and Rayner, S. 2011. MiRPara: A SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences. BMC Bioinformatics 12:107. doi: 10.1186/1471-2105-12-107
Xu, J., Chen, Q., Zen, K., Zhang, C., and Zhang, Q. 2013. Synaptosomes secrete and uptake functionally active microRNAs via exocytosis and endocytosis pathways. Journal of Neurochemistry 124:15–25. doi: 10.1111/jnc.12057
Yang, X., Fishilevich, E., German, M. A., Gandra, P., McEwan, R. E., Billion, A., Knorr, E., Vilcinskas, A., and Narva, K. E. 2021. Elucidation of the microRNA transcriptome in western corn rootworm reveals its dynamic and evolutionary complexity. Genomics, Proteomics and Bioinformatics 19:800–814. doi: 10.1016/j.gpb.2019.03.008
Yang, X., and Li, L. 2011. miRDeep-P: A computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics (Oxford, England) 27:2614–2615. doi: 10.1093/bioinformatics/btr430
Yoshikawa, M. 2013. Biogenesis of trans-acting siRNAs, endogenous secondary siRNAs in plants. Genes and Genetic Systems 88:77–84. doi: 10.1266/ggs.88.77
Zhang, T., Zhao, Y. L., Zhao, J. H., Wang, S., Jin, Y., Chen, Z. Q., Fang, Y. Y., Hua, C. L., Ding, S. W., and Guo, H. S. 2016a. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nature Plants 2:1–6. doi: 10.1038/nplants.2016.153
Zhang, Y., Wang, Y., Xie, F., Li, C., Zhang, B., Nichols, R. L., and Pan, X. 2016b. Identification and characterization of microRNAs in the plant parasitic root-knot nematode Meloidogyne incognita using deep sequencing. Functional and Integrative Genomics 16:127–142. doi: 10.1007/s10142-015-0472-x
Zhou, G., Zhou, Y., and Chen, X. 2017. New insight into inter-kingdom communication: horizontal transfer of mobile small RNAs. Frontiers in microbiology 8, 768. doi: 10.3389/fmicb.2017.00768