Have a personal or library account? Click to login
Waitea circinata: a novel biocontrol agent against Meloidogyne enterolobii on tomato plants Cover

Waitea circinata: a novel biocontrol agent against Meloidogyne enterolobii on tomato plants

Open Access
|Mar 2025

References

  1. Food and Agricultural Organization of the United Nations. FAOSTAT Crops and livestock products. 2022. Available from: https://www.fao.org/faostat/en/#data/QCL
  2. Quinet M, Angosto T, Yuste-Lisbona FJ, Blanchard-Gros R, Bigot S, Martinez JP. Tomato fruit development and metabolism. Front Plant Sci. 2019;10:1554. doi: 10.3389/fpls.2019.01554.
  3. EMBRAPA. Produção de tomate para processamento industrial [Tomato production for industrial processing]. 2012. Available from: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/941866/producao-de-tomate-para-processamento-industrial
  4. Instituto Brasileiro de Geografia e Estatística. Produção de tomate no Brasil | IBGE [Tomato production in Brazil | IBGE]. 2023. Available from: https://www.ibge.gov.br/explica/producao-agropecuaria/tomate/br
  5. Shilpa SP, Thakur V, Sharma A, Rana RS, Kumar P. A status-quo review on management of root knot nematode in tomato. J Hortic Sci Biotechnol. 2022;97(4):403–16. doi: 10.1080/14620316.2022.2034531.
  6. Reis A, Pinheiro JB. Boletim de Pesquisa 102 e Desenvolvimento [Research Bulletin 102 and Development]. Fevereiro, 2014. ISSN 1677-2229.
  7. Carneiro RG, Mônaco A A, Moritz MP, Nakamura KC, Scherer A. Identificação de Meloidogyne mayaguensis em goiabeira e em plantas invasoras, em solo argiloso, no Estado do Paraná [Identification of Meloidogyne mayaguensis in guava trees and invasive plants in clay soil in the State of Paraná]. Nematol Bras. 2006;30(3):293–8. Available from: https://nematologia.com.br/files/revnb/30_3.pdf#page=61
  8. Moens M, Perry RN, Starr JL. Meloidogyne species – a diverse group of novel and important plant parasites. In: Root-Knot Nematodes. 2009;1:483. doi: 10.1079/9781845934927.0001.
  9. Castagnone-Sereno P. Meloidogyne enterolobii (= M. mayaguensis): Profile of an emerging, highly pathogenic, root-knot nematode species. Nematology. 2012;14(2):133–8. doi: 10.1163/156854111X601650.
  10. d'Errico G, Silvia L. Novel biological and biotechnological methods of nematode management, an effective strategy to enhance crop productivity. In: Khan MR, editor. Novel Biological and Biotechnological Applications in Plant Nematode Management. Springer Nature; 2023. p. 71–93. doi: 10.1007/978-981-99-2893-4_3.
  11. Philbrick AN, Adhikari TB, Louws FJ, Gorny AM. Meloidogyne enterolobii, a major threat to tomato production: current status and future prospects for its management. Front Plant Sci. 2020;11:606395. doi: 10.3389/fpls.2020.606395.
  12. Ministério da Agricultura e Pecuária. AGROFIT [AGROFIT]. 2024. Available from: https://agrofit.agriculatura.gov.br/agrofit_cons/principal_agrofit_cons
  13. Liang YJ, Ariyawansa HA, Becker JO, Yang J. The evaluation of egg-parasitic fungi Paraboeremia taiwanensis and Samsoniella sp. for the biological control of Meloidogyne enterolobii on Chinese cabbage. Microorganisms. 2020;8(6):828. doi: 10.3390/microorganisms8060828.
  14. López-Lima D, Alarcón-Utrera D, Ordáz-Meléndez JA, Villain L, Carrión G. Metarhizium carneum formulations: a promising new biological control to be incorporated in the integrated management of Meloidogyne enterolobii on tomato plants. Plants. 2023;12(19):3431. doi: 10.3390/plants12193431.
  15. Carvalho A, Chaibub K, Sousa D, Silva C, Moller P, Pereira M, et al. Characterization of the antagonism of the mycorrhizal fungus Waitea circinata against Magnaporthe oryzae, Cochliobolus miyabeanus, Monographella albescens and Sarocladium oryzae rice pathogens. Colloquium Agrariae. 2022;18(2):1–14. doi: 10.5747/ca.2022.v18.n2.a483.
  16. Sousa KCI, Chaibub AA, Carvalho JCB de, Filippi MCC de, Araújo LG de. Mechanisms involved in the biocontrol of rice sheath blight by Waitea circinata. Pesqui Agropecuária Trop. 2022;52:e72707. doi: 10.1590/1983-40632022v5272707.
  17. Cruz LV da, Santos MHF, Gama BTAF, Araújo LG de, Terezan AP, Oliveira Neto JR de. Profile of volatile compounds released by Waitea circinata against Magnaporthe oryzae under different periods and temperatures. Pesqui Agropecuária Trop. 2023;53:e75038. doi: 10.1590/1983-40632023v5375038.
  18. Alvares CA, Stape JL, Sentelhas PC, de Moraes Gonçalves JL, Sparovek G. Köppen's climate classification map for Brazil. Meteorol Z. 2013;22(6):711–28. doi: 10.1127/0941-2948/2013/0507.
  19. Coolen WA, D’herde CJ. A method for the quantitative extraction of nematodes from plant tissue. Belgium: State Agricultural Research Centre; 1972. Available from: https://www.cabidigitallibrary.org/doi/full/10.5555/19722001202
  20. Oostenbrink M. Major characteristics of the relation between nematodes and plants. Meded Landbouwhogeschool Wageningen. 1966;66(4):46. Available from: https://edepot.wur.nl/284956
  21. Filippi MCC, da Silva GB, Silva-Lobo VL, Côrtes MVCB, Moraes AJG, Prabhu AS. Leaf blast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biol Control. 2011;58(2):160–6. doi: 10.1016/j.biocontrol.2011.04.016.
  22. Aebi H. Catalase in vitro. In: Methods in Enzymology. Vol. 105. Elsevier; 1984. p. 121–6. doi: 10.1016/S0076-6879(84)05016-3.
  23. Pan SQ, Ye XS, Kuć J. Association of β-1,3-glucanase activity and isoform pattern with systemic resistance to blue mould in tobacco induced by stem injection with Peronospora tabacina or leaf inoculation with tobacco mosaic virus. Phytopathology. 1991;81(5):502–7.
  24. Box GEP, Cox DR. An analysis of transformations. J R Stat Soc Series B (Methodol). 1964;26(2):211–43. doi: 10.1111/j.2517-6161.1964.tb00553.x.
  25. Schouteden N, De Waele D, Panis B, Vos CM. Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front Microbiol. 2015;6:1280. doi: 10.3389/fmicb.2015.01280.
  26. Shah MM, Mahamood M, editors. Nematology—Concepts, Diagnosis and Control. InTech; 2017. doi: 10.5772/66851.
  27. Alfiky A, Weisskopf L. Deciphering Trichoderma–plant–pathogen interactions for better development of biocontrol applications. J Fungi. 2021;7(1):61. doi: 10.3390/jof7010061.
  28. Fester T, Hause G. Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza. 2005;15(5):373–9. doi: 10.1007/s00572-005-0363-4.
  29. Nath M, Bhatt D, Prasad R, Tuteja N. Reactive oxygen species (ROS) metabolism and signaling in plant-mycorrhizal association under biotic and abiotic stress conditions. In: Varma A, Prasad R, Tuteja N, editors. Mycorrhiza—Eco-Physiology, Secondary Metabolites, Nanomaterials. Springer International Publishing; 2017. p. 223–32. doi: 10.1007/978-3-319-57849-1_12.
  30. Rosenkranz M, Shi H, Ballauff J, Schnitzler J-P, Polle A. Chapter eight—Reactive oxygen species (ROS) in mycorrhizal fungi and symbiotic interactions with plants. In: Mittler R, Breusegem FV, editors. Advances in Botanical Research. Vol. 105. Academic Press; 2023. p. 239–75. doi: 10.1016/bs.abr.2022.11.001.
  31. Wu Q-S, Zou Y-N, Fathi Abd-Allah E. Chapter 15—Mycorrhizal association and ROS in plants. In: Ahmad P, editor. Oxidative Damage to Plants. Academic Press; 2014. p. 453–75. doi: 10.1016/B978-0-12-799963-0.00015-0.
  32. Kapoor R, Singh N. Arbuscular mycorrhiza and reactive oxygen species. In: Wu Q-S, editor. Arbuscular Mycorrhizas and Stress Tolerance of Plants. Springer; 2017. p. 225–43. doi: 10.1007/978-981-10-4115-0_10.
  33. Chen J, Zhang H, Zhang X, Tang M. Arbuscular mycorrhizal symbiosis mitigates oxidative injury in black locust under salt stress through modulating antioxidant defence of the plant. Environ Exp Bot. 2020;175:104034. doi: 10.1016/j.envexpbot.2020.104034.
  34. Mohammadi MA, Cheng Y, Aslam M, Jakada BH, Wai MH, Ye K. ROS and oxidative response systems in plants under biotic and abiotic stresses: revisiting the crucial role of phosphite-triggered plant defense response. Front Microbiol. 2021;12:631318. doi: 10.3389/fmicb.2021.631318.
  35. Davis EL, Hussey RS, Baum TJ, Bakker J, Schots A, Rosso MN, et al. Nematode parasitism genes. Annu Rev Phytopathol. 2000;38(1):365–96. doi: 10.1146/annurev.phyto.38.1.365.
  36. Subedi S, Thapa B, Shrestha J. Root-knot nematode (Meloidogyne incognita) and its management: a review. J Agric Nat Resour. 2020;3(2):21–31. doi: 10.3126/janr.v3i2.32298.
  37. Abdel Latef AAH, Chaoxing H. Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress. Acta Physiol Plant. 2011;33(4):1217–25. doi: 10.1007/s11738-010-0650-3.
  38. Haddidi I, Duc NH, Tonk S, Rápó E, Posta K. Defense enzymes in mycorrhizal tomato plants exposed to combined drought and heat stresses. Agronomy. 2020;10(11):1657. doi: 10.3390/agronomy10111657.
  39. Spanu P, Boller T, Ludwig A, Wiemken A, Faccio A, Bonfante-Fasolo P. Chitinase in roots of mycorrhizal Allium porrum: regulation and localization. Planta. 1989;177:447–55. doi: 10.1007/BF00392612.
  40. Vierheilig H, Alt M, Mohr U, Boller T, Wiemken A. Ethylene biosynthesis and activities of chitinase and ß-1, 3-glucanase in the roots of host and non-host plants of vesicular-arbuscular mycorrhizal fungi after inoculation with Glomus mosseae. J Plant Physiol. 1994;143(3):337–43. doi: 10.1016/S0176-1617(11)81641-X.
  41. Volpin H, Elkind Y, Okon Y, Kapulnik Y. A vesicular arbuscular mycorrhizal fungus (Glomus intraradix) induces a defense response in alfalfa roots. Plant Physiol. 1994;104(2):683–9. doi: 10.1104/pp.104.2.683.
  42. Volpin H, Phillips DA, Okon Y, Kapulnik Y. Suppression of an isoflavonoid phytoalexin defense response in mycorrhizal alfalfa roots. Plant Physiol. 1995;108(4):1449–54. doi: 10.1104/pp.108.4.1449.
  43. Kepenekci I, Hazir S, Oksal E, Lewis EE. Application methods of Steinernema feltiae, Xenorhabdus bovienii and Purpureocillium lilacinum to control root-knot nematodes in greenhouse tomato systems. Crop Prot. 2018;108:31–8. doi: 10.1016/j.cropro.2018.02.009.
  44. Mukhtar T. Management of root-knot nematode, Meloidogyne incognita, in tomato with two Trichoderma species. Pak J Zool. 2018;50(4). doi: 10.17582/journal.pjz/2018.50.4.sc15.
  45. Poveda J, Abril-Urias P, Escobar C. Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Front Microbiol. 2020;11:992. doi: 10.3389/fmicb.2020.00992.
  46. Luambano ND, Manzanilla-López RH, Kimenju JW, Powers SJ, Narla RD, Wanjohi WJ, et al. Effect of temperature, pH, carbon and nitrogen ratios on the parasitic activity of Pochonia chlamydosporia on Meloidogyne incognita. Biol Control. 2015;80:23–9. doi: 10.1016/j.biocontrol.2014.09.003.
  47. Morales-Cedeño LR, Orozco-Mosqueda MdC, Loeza-Lara PD, Parra-Cota FI, de los Santos-Villalobos S, Santoyo G. Plant growth-promoting bacterial endophytes as biocontrol agents of pre- and post-harvest diseases: fundamentals, methods of application and future perspectives. Microb Res. 2021;242:126612. doi: 10.1016/j.micres.2020.126612.
DOI: https://doi.org/10.2478/jofnem-2025-0002 | Journal eISSN: 2640-396X | Journal ISSN: 0022-300X
Language: English
Submitted on: Jun 17, 2024
Published on: Mar 14, 2025
Published by: Society of Nematologists, Inc.
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2025 Gianlucca de Urzêda Alves, CG Felipe, RF Denner, RR Mara, GA Leila, published by Society of Nematologists, Inc.
This work is licensed under the Creative Commons Attribution 4.0 License.