References
- Avenot, H. F., and Michailides, T. J., 2010. Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Protection 29:643–651.
- Chen, X., Li, X., Pang, K., Fan, X., Ma, Y., and Hu, J., 2018. Dissipation behavior and residue distribution of fluazaindolizine and its seven metabolites in tomato ecosystem based on SAX SPE procedure using HPLC-QqQ-MS/MS technique. Journal of Hazardous Materials 342:698–704.
https://doi.org/10.1016/j.jhazmat.2017.08.056 - Chu, L., and Qing, F. L., 2014. Oxidative trifluoromethylation and trifluoromethylthiolation reactions using (trifluoromethyl) trimethylsilane as a nucleophilic CF3 source. Accounts of Chemical Research 47:1513–1522.
https://doi.org/10.1021/ar4003202 - Desaeger, J., Wram, C., and Zasada, I., 2019. New reduced-risk agricultural nematicides-rationale and review. Journal of Nematology 52:1–16.
https://doi.org/10.21307/jofnem-2020-091 - Faostat, F. A. O., 2021. Available online:
http://www.fao.org/faostat/en/#data (accessed January, 2023). - Faske, T. R., and Hurd, K., 2015. Sensitivity of Meloidogyne incognita and Rotylenchulus reniformis to fluopyram. Journal of Nematology 47:316.
- Garabedian, S., and Van Gundy, S. D., 1983. Use of avermectins for the control of Meloidogyne incognita on tomatoes. Journal of Nematology 15: 503–510.
- Giannakou, I. O., and Panopoulou, S., 2019. The use of fluensulfone for the control of root-knot nematodes in greenhouse cultivated crops: Efficacy and phytotoxicity effects. Cogent Food & Agriculture 5:1643819.
https://doi.org/10.1080/23311932.2019.1643819 - Gómez-González, G., Cruz-Lachica, I., Márquez-Zequera, I., Valdez-Torres, J. B., Tovar-Pedraza, J. M., Osuna-García, L. A., and García-Estrada, R. S., 2021. Meloidogyne enterolobii egg extraction in NaOCl versus infectivity of inoculum on cucumber. Journal of Nematology 53.
https://doi.org/10.21307/jofnem-2021-057 - Gómez-González, G., Márquez-Zequera, I., Cruz Lachica, I., Osuna-García, L. A., and García-Estrada, R. S., 2020. First report of Meloidogyne enterolobii parasitizing cucumber in Sinaloa, Mexico. Plant Disease 104:1260.
https://doi.org/10.1094/PDIS-09-19-1919-PDN - Greco, N., and Di Vito, M., 2009. Population dynamics and damage levels. In R. N. Perry, M. Moens, and J. L. Starr, eds. Root-knot Nematodes. Oxfordshire: CAB International, pp. 246–269.
- Kearn, J., Ludlow, E., Dillon, J., O’Connor, V., and Holden-Dye, L., 2014. Fluensulfone is a nematicide with a mode of action distinct from anticholinesterases and macrocyclic lactones. Pesticide Biochemistry and Physiology 109:44–57.
https://doi.org/10.1016/j.pestbp.2014.01.004 - Long, H., Liu, H., and Xu, J. H., 2006. Development of a PCR diagnostic for the root-knot nematode Meloidogyne enterolobii. Acta Phytopathologica Sinica 36:109–115.
- Martínez, G. J. A., Díaz, T. V., Allende, M. R., García, E. R. S., and Carrillo, F. J. A., 2015. Primer reporte de Meloidogyne enterolobii parasitando tomate en Culiacán, Sinaloa, México. Revista Mexicana de Ciencias Agrícolas 11:2165–2168.
https://doi.org/10.29312/remexca.v0i11.786 - Meng, Q. P., Long, H., and Xu, J. H., 2004. PCR assays for rapid and sensitive identification of three major root-knot nematodes, Meloidogyne incognita, M. javanica, and M. arenaria. Acta Phytopathologica Sinica 34:204–210.
- Oka, Y., 2020. From old-generation to next-generation nematicides. Agronomy 10:1387.
https://doi.org/10.3390/agronomy10091387 - Oka, Y., and Saroya, Y., 2019. Effect of fluensulfone and fluopyram on the mobility and infection of second-stage juveniles of Meloidogyne incognita and M. javanica. Pest Management Science 75:2095–2106.
https://doi.org/10.1002/ps.5399 - Oka, Y., Shuker, S., and Tkachi, N., 2009. Nematicidal efficacy of MCW-2, a new nematicide of the fluoroalkenyl group, against the root-knot nematode Meloidogyne javanica. Pest Management Science 65:1082–1089.
https://doi.org/10.1002/ps.1796 - Qiao, K., Liu, Q., and Zhang, S., 2021. Evaluation of fluazaindolizine, a new nematicide for management of Meloidogyne incognita in squash in calcareous soils. Crop Protection 143:105469.
https://doi.org/10.1016/j.cropro.2020.105469 - Rashidifard, M., Marais, M., Daneel, M. S., Mienie, C., and Fourie, H., 2019. Molecular characterisation of Meloidogyne enterolobii and other Meloidogyne spp. from South Africa. Tropical Plant Pathology 44: 213–224.
- SAS Institute., 2002. Users guide. Statistics. (Release 9.0). Cary, NC: SAS Institute.
- Schleker, A. S. S., Rist, M., Matera, C., Damijonaitis, A., Collienne, U., Matsuoka, K., Habash, S. S., Twelker, K., Gutbrod, O., Saalwächter, C., Windau, M., Matthiesen, S., Stefanovska, T., Scharwey, M., Marx, M. T., Geibel, S., and Grundler, F. M. W., 2022. Mode of action of fluopyram in plant-parasitic nematodes. Scientific Reports 12:11954.
https://doi.org/10.1038/s41598-022-15782-7 - Thoden, T. C., and Wiles, J. A., 2019. Biological attributes of Salibro™, a novel sulfonamide nematicide. Part 1: Impact on the fitness of Meloidogyne incognita, M. hapla, and Acrobeloides buetschlii. Nematology 21:625–639.
https://doi.org/10.1163/15685411-00003240 - USDA., 1991. United States standards for grades of fresh tomatoes.
- Wram, C. L., and Zasada, I. A., 2019. Short-term effects of sublethal doses of nematicides on Meloidogyne incognita. Phytopathology 109:1605–1613.
https://doi.org/10.1094/PHYTO-11-18-0420-R - Yang, B., and Eisenback, J. D., 1983. Meloidogyne enterolobii n. sp. (Meloidogynidae), a root-knot nematode parasitizing pacara earpod tree in China. Journal of Nematology 15:381.