References
- Acevedo, J.P.M., Samuels, R.I., Machado, I.R. and Dolinski, C. 2007. Interactions between isolates of the entomopathogenic fungus Metarhizium anisopliae and the entomopathogenic nematode Heterorhabditis bacteriophora JPM4 during infection of the sugar cane borer Diatraea saccharalis (Lepidoptera: Pyralidae). Journal of Invertebrate Pathology 96:187–92.
- Barzman, M., Bàrberi, P., Birch, A.N.E., Boonekamp, P., Dachbrodt-Saaydeh, S., Graf, B., Hommel, B., Jensen, J.E., Kiss, J., Kudsk, P., Lamichhane, J.R., Messéan, A., Moonen, A.C., Ratnadass, A., Ricci, P., Sarah, J.L., and Sattin, M. 2015. Eight principles of integrated pest management. Agronomy for Sustainable Development 35:1199–1215.
- Blanco-Pérez, R., Sáenz-Romo, M.G., Vicente-Díez, I., Ibáñez-Pascual, S., Martínez-Villar, E., Marco-Mancebón, V.S., Pérez-Moreno, I., and Campos-Herrera, R. 2020. Impact of vineyard ground cover management on the occurrence and activity of entomopathogenic nematodes and associated soil organisms. Agriculture Ecosystem and Environment 301:107028.
- Blanco-Pérez, R., Vicente-Díez, I., Ramos-Sáenz de Ojer, J.L., Marco-Mancebón, V.S., Pérez-Moreno, I., and Campos-Herrera, R. 2022. Organic viticulture enhanced the activity of native entomopathogenic nematodes in DOCa Rioja soils (North of Spain). Agriculture Ecosystem and Environment 332:107931.
- Bode, H.B. 2009. Entomopathogenic bacteria as a source of secondary metabolites. Current Opinion in Chemical Biology 13:224–230.
- Boemare, N. 2002. Biology, taxonomy and systematics of Photorhabdus and Xenorhabdus. Pp. 35–56 in R. Gaugler, ed. Entomopathogenic nematology. Wallingford, UK: CABI Publishing.
- Campos-Herrera, R., Vicente-Díez, I., Blanco-Pérez, R., Chelkha, M., González-Trujillo, M.M., Puelles, M., Cepulite, R., and Pou, A. 2021. Positioning entomopathogenic nematodes for the future viticulture: exploring their use against biotic threats and as bioindicators of soil health. Turkish Journal of Zoology 45:335–346.
- Campos-Herrera, R., González-Trujillo, M.M., Vicente-Díez, I., Carpentero, E., Puelles, M., Vaquero, E., and Cepulite, R. 2023. Exploring entomopathogenic nematodes for the management of Lobesia botrana (Lepidoptera: Tortricidae) in vineyards: Fine-tuning of application, target area, and timing. Crop Protection 174:106392.
- Can Ulu, T., Sadic, B., and Susurluk, I.A. 2016. Effects of different pesticides on virulence and mortality of some entomopathogenic nematodes. Invertebrate Survival Journal 13:111–115.
- Daane, K.M., Vincent, C., Isaacs, R., and Ioriatti, C. 2018. Entomological opportunities and challenges for sustainable viticulture in a global market. Annual Review of Entomology 63:193–214.
- Damalas, C.A. 2009. Understanding benefits and risks of pesticide use. Scientific Research and Essays 4:945e949.
- De Nardo, E.A., and Grewal, P.S. 2003. Compatibility of Steinernema feltiae (Nematoda: Steinernematidae) with pesticides and plant growth regulators used in glasshouse plant production. Biocontrol Science and Technology 13:441–448.
- Dillman, A.R., Chaston, J.M., Adams, B.J., Ciche, T.A., Goodrich-Blair, H., Stock, S.P., Sternberg, P.W., and Rall, G.F. 2012. An entomopathogenic nematode by any other name. PLoS Pathogens 8:e1002527.
- Dolinski, C., Choo, H.Y., and Duncan, L.W. 2012. Grower acceptance of entomopathogenic nematodes: Case studies on three continents. Journal of Nematology 44:226–235.
- EC 2009. Regulation (EC) No 1107/2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Official Journal of the European Union 52:1–50.
- EU 2015. Commission Implementing Regulation (EU) 2015/408 on implementing Article 80(7) of Regulation (EC) No. 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market and establishing a list of candidates for substitution. Official Journal of the European Union 67:18–22.
- European Commission 2020. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A Farm to Fork Strategy for a fair, healthy and environmentally-friendly food system. COM/2020/381 final, European Commission.
- García del Pino, F., and Jové, M. 2005. Compatibility of entomopathogenic nematodes with fipronil. Journal of Helminthology 79:333–337.
- Gutiérrez, C., Campos-Herrera, R., and Jiménez, J. 2008. Comparative study of the effect of selected agrochemical products on Steinernema feltiae (Rhabditida: Steinernematidae). Biocontrol Science and Technology 18:101–108.
- Herrero-Hernández, E., Rodríguez-Cruz, M.S., Pose-Juan, E., Sánchez-González, S., Andrades, M.S., and Sánchez-Martín, M.J. 2017. Seasonal distribution of herbicide and insecticide residues in the water resources of the vineyard region of La Rioja (Spain). Science of the Total Environment 609:161–171.
- Kaya, H.K., Aguillera, M.M., Alumai, A., Choo, H.Y., de la Torre, M., Fodor, A., Ganguly, S., Hazir, S., Lakatos, T., Pye, A., Wilson, M., Yamanaka, S., Yang, H., and Ehlers, R.U. 2006. Status of entomopathogenic nematodes and their symbiotic bacteria from selected countries or regions of the world. Biological Control 38:134–155.
- Kotsinis, V., Dritsoulas, A., Ntinokas, D., and Fiannakou, I.O. 2023. Nematicidal effects of four terpenes differ among entomopathogenic nematode species. Agriculture 13:1143.
- Krishnayyaand, P.V., and Grewal, P.S. 2002. Effect of neem and selected fungicides on viability and virulence of the entomopathogenic nematode Steinernema feltiae. Biocontrol Science and Technology 12:2: 259–266.
- Lacey, L.A., Grzywacz, D., Shapiro-Ilan, D.I., Frutos, R., Brownbridge, M., and Goettel, M.S. 2015. Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology 132:1–41.
- Laznik, Ž., Vidrih, M., and Trdan, S. 2012. The effects of different fungicides on the viability of entomopathogenic nematodes Steinernema feltiae (Filipjev), S. carpocapsae Weiser, and Heterorhabditis downesi Stock, Griffin & Burnell (nematoda: Rhabditida) under laboratory conditions. Chilean Journal of Agricultural Reseach 72:62.
- Laznik, Ž., and Trdan, S. 2014. The influence of insecticides on the viability of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) under laboratory conditions. Pest Management Science 70:784–789.
- Lewis, E.E., Hazir, S., Hodson, A., and Gulcu, B. 2015. Trophic relationships of entomopathogenic nematodes in agricultural habitats. Pp 139–163 in R. Campos-Herrera, R. ed. Nematode pathogenesis of insects and other pests: ecology and applied technologies for sustainable plant and crop protection. AG Switzerland: Springer International Publishing, AG Switzerland.
- Nalinci, E., Karagoz, M., Gulcu, B., Ulug, D., Hazal Gulsen, S., Cimen, H., Touray, M., Shapiro-Ilan, D., and Hazir, S. 2021. The effect of chemical insecticides on the scavenging performance of Steinernema carpocapsae: Direct effects and exposure to insects killed by chemical insecticides. Journal of Invertebrate Pathology 184: 107641.
- Nermut, J., and Mracek, Z. 2010. The influence of pesticides on the viability and infectivity of entomopathogenic nematodes (Nematoda: Steinernematidae). Russian Journal of Nematology 18:14–148.
- Nicholls, C.I., Altieri, M.A., and Ponti, L. 2008. Enhancing plant diversity for improved insect pest management in Northern California organic vineyards. Acta Horticulturae 785:263–278.
- OIV 2023. International organization of vine and wine.
https://www.oiv.int/what-we-do/statistics . - Özdemir, E., Inak, E., Evlice, E., and Laznik, Z. 2020. Compatibility of entomopathogenic nematodes with pesticides registered in vegetable crops under laboratory conditions. Journal of Plant Disease Protection 127:529–535.
- Pecenka, J.R., Ingwell, L.L., Foster, R.E., Krupke, C.H., and Kaplan, I. 2021. IPM reduces insecticide applications by 95% while maintaining or enhancing crop yields through wild pollinator conservation. Proceedings of the National Academy of Sciences of the United States of America 118.
- Pertot, I., Caffi, T., Rossi, V., Mgnai, L., Hoffmann, C., Grando, M.S., Gary, C., Lafond, D., Duso, C., Thiery, D., Mazzoni, V., and Anfora, G. 2017. A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. Crop Protection 97:70–84.
- Pose-Juan, E., Sánchez-Martín, M.J., Andrades, M.S., Rodríguez-Cruz, M.S., and Herrero-Hernández, H. 2015. Pesticide residues in vineyard soils from Spain: Spatial and temporal distributions. Science of the Total Environment 514:351–358.
- Provost, C., and Pedneault, K. 2016. The organic vineyard as a balanced ecosystem: improved organic grape management and impacts on wine quality. Scientia Horticulturae 208:43–56.
- Shapiro-Ilan, D. I., Jackson, M., Reilly, C. C. and Hotchkiss, M. W. 2004. Effects of combining an entomopathogenic fungi or bacterium with entomopathogenic nematodes on mortality of Curculio caryae (Coleoptera: Curculionidae). Biologial Control 30:119–26.
- Steyn, V.M., Malan, A.P., and Addison, P. 2021. Efficacy of entomopathogens against Thaumatotibia leucotreta under laboratory conditions. Entomologia Expimentalis et Applicata 169:449–461.
- Stock, S.P. 2015. Diversity, biology and evolutionary relationships. Pp. 3–27 in R. Campos-Herrera, ed. Nematode pathogeneses of insects and other pests. Switzerland: Springer International Publishing.
- Vicente-Díez, I., Blanco-Pérez, R., Chelkha, M., Puelles, M., Pou, A., and Campos-Herrera, R. 2021a. Exploring the use of entomopathogenic nematodes and the natural products derived from their symbiotic bacteria to control the grapevine moth, Lobesia botrana (Lepidoptera: Tortricidae). Insects 12:1033.
- Vicente-Díez, I., Blanco-Pérez, R., González-Trujillo, M.M., Pou, A., and Campos-Herrera, R. 2021b. Insecticidal effect of entomopathogenic nematodes and the cell-free supernatant from their symbiotic bacteria against Philaenus spumarius (Hemiptera: Aphrophoridae) nymphs. Insects, 12:448.
- Vieux, P.D., and Malan, A.P. 2015. Prospects for using entomopathogenic nematodes to control the vine mealybug, Planococcus ficus, in South African vineyards. South African Journal of Enology and Viticulture 36:59–70.
- Williams, R.N., Fickle, D.S., Grewal, P.S., and Dutcher, J. 2010. Field efficacy against the grape root borer Vitacea polistiformis (Lepidoptera: Sesiidae) and persistence of Heterorhabditis zealandica and H. bacteriophora (Nematoda: Heterorhabditidae) in vineyards. Biological Control 53:86–91.
- Winter, S., Bauer, T., Strauss, P., Kratschmer, S., Paredes, D., Popescu, D., Landa, B., Guzmán, G., Gómez, J.A., Guernion, M., Zaller, J.G., and Batáry, P. 2018. Effects of vegetation management intensity on biodiversity and ecosystem services in vineyards: A meta-analysis. Journal of Applied Ecology 55:2484–2495.
- Wu, S., Youngman, R. R., Kok, L. T., Laub, C. A. and Pfeiffer, D. G. 2014. Interaction between entomopathogenic nematodes and entomopathogenic fungi applied to third instar southern masked chafer white grubs, Cyclocephala lurida (Coleoptera: Scarabaeidae), under laboratory and greenhouse conditions. Biological Control 76:65–73.