Abd El-Aziz, M.H., and Khalil, M.S. 2020. Antiviral and Anti-nematicidal potentials of chitosan. Journal of Plant Science and Phytopathology 4: 055–059. doi: 10.29328/journal.jpsp.1001051
Asif, M., Ahmad, F., Tariq, M., Khan, A., Ansari, T., Khan, F., and Siddiqui, A.M. 2017. Potential of chitosan alone and in combination with agricultural wastes against the root-knot nematode, Meloidogyne incognita infesting eggplant Journal of plant protection research. 57(3):288–295. doi:10.1515/jppr-2017-0041.
Dai Lam, T., Hoang, V.D., Le Ngoc Lien, N..N., and Dien, P.G. 2006. Synthesis and characterization of chitosan nanoparticles used as drug carrier. Journal of Chemistry 44(1):105–9.
Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh, D.F., Javanmard, R., Dokhani, A., Khorasani, S., and Mozafari, M.R. 2018. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 10(2):57. doi: 10.3390/pharmaceutics12060594.
Ganaie, M.A. and Khan, T.A. 2011. Studies on the interactive effect of Meloidogyne incognita and Fusarium solani on Lycopersicon esculentum Mill. International Journal of Botany 7(2): 205–208. doi: 10.3390/md1211532.
Gortari, M.C., and Hours, R.A. 2008. Fungal chitinases and their biological role in the antagonism onto nematode eggs. A review. Mycological Progress. 7(4):221–38.
Goy, R.C., Morais, S.T., and Assis, O.B. 2016. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Revisit Brasileira de Farmacognosia. 122–7. doi: 10.1016/j.bjp.2015.09.010.
Heal, C.M., Bruton, B.D., and Davis, R.M. 1989. Influence of Glomus intraradices and soil phosphorus on Meloidogyne incognita infecting Cucumis melo. Journal of Nematology 21(1):69.
Hidangmayum, A., Dwivedi, P., Katiyar, D., and Hemantaranjan, A. 2019. Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants 25(2): 313–26.
Jung, W.J., and Park, R.D. 2014. Bioproduction of chitooligosaccharides: present and perspectives. Marine Drugs 12(11):5328–56. doi: 10.3390/md12115328.
Kafetzopoulos, D., Martinou, A., and Bouriotis, V. 1993. Bioconversion of chitin to chitosan: purification and characterization of chitin deacetylase from Mucor rouxii. Proceedings of the National Academy of Sciences 90(7):2564–8.
Karava, A., Lazaridou, M., Nanaki, S., Michailidou, G., Christodoulou, E., Kostoglou, M., Iatrou, H., and Bikiaris, D.N. 2020. Chitosan derivatives with mucoadhesive and antimicrobial properties for simultaneous nanoencapsulation and extended ocular release formulations of dexamethasone and chloramphenicol drugs. Pharmaceutics 12(6): 594. doi: 10.3390/pharmaceutics12060594.
Mohammadpour, D.N., Eskandari, R., Avad, M.R., Zolfagharian, H., Mohammad, M.S.A., and Rezayat, M. 2012. Preparation and in vitro characterization of chitosan nanoparticles containing Mesobuthus eupeus scorpion venom as an antigen delivery system. Journal of Venomous Animals and Toxins Including Tropical Diseases 18:44–52.
Naveed, M., Phil, L., Sohail, M., Hasnat, M., Baig, M.M., Ihsan, A.U., Shumzaid, M., Kakar, M.U., Khan, T.M., Akabar, M.D., and Hussain, M.I. 2019. Chitosan oligosaccharide (COS): An overview. International Journal of Biological Macromolecules 129: 827–43. doi: 10.1016/j.ijbiomac.2019.01.192.
Nguyen, T.V., Nguyen, T.T., Wang, S.L., Vo, T.P., and Nguyen, A.D. 2017. Preparation of chitosan nanoparticles by TPP ionic gelation combined with spray drying, and the antibacterial activity of chitosan nanoparticles and a chitosan nanoparticle–amoxicillin complex Research on Chemical Intermediates 43(6):3527–37. doi: 10.1007/s11164-016-2428-8.
Rabea, E.I., Badawy, M, E., Stevens, C.V., Smagghe, G., and Steurbaut, W. 2003. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465. doi: 10.1021/bm034130m.
Singh, A., Garg, G., and Sharma, P.K. 2010. Nanospheres: a novel approach for targeted drug delivery system. International Journal of Pharmaceutical Sciences Review and Research 5(3):84–8.
Sujima A.A., Sahi, S.V., and Venkatachalam, P. 2016. Synthesis of bioactive chemicals crosslinked sodium tripolyphosphate (TPP)-chitosan nanoparticles for enhanced cytotoxic activity against human ovarian cancer cell line (PA-1). Journal of Nanomedicine & Nanotechnology 7(6):1–9. doi: 10.4172/2157-7439.1000418.
Yadav, P., Yadav, H., Shah, V.G., Shah, G., and Dhaka, G. 2015. Biomedical biopolymers, their origin and evolution in biomedical sciences: A systematic review. Journal of Clinical and Diagnostic Research. 9(9): ZE21–ZE25. doi: 10.7860/JCDR/2015/13907.6565.
Yanat, M., and Schroen, K. 2021. Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. Reactive and Functional Polymers 161:104849. doi: 10.1016/j.reactfunctpolym.2021.104849.
Youssef, D. and Masry, E.L. 2018. Effect of Chitosan-Nanoparticles on the shelf life of chilled chicken meat and decontamination of Staphylococcus aureus and Salmonella typhimurium. Animal Health Research Journal 6(1):-18.
Zhang, M., I., Tan, T., Yuan, H., and Rui, C. 2003. Insecticidal and fungicidal activities of chitosan and oligo-chitosan. Journal of Bioactive and Compatible Polymers18(5): 391–400. doi: 10.1177/0883911503039019.