References
- Bongers, T. 1990. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia 83:14–19.
- Bongers, T., and Bongers, M. 1998. Functional diversity of nematodes. Applied Soil Ecology 10: 239–251.
- Bongers, T., and Ferris, H. 1999. Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution 14:224–228.
- Borůvka, L., Kozak, J., Kristoufkova, S., and Huan-Wei, C. 1996. Heavy contamination of soil with cadmium, lead and zinc in the alluvium of the Litavka River [Czech Republic]. Rostlinna Vyroba-UZPI (Czech Republic).
- Borůvka, L., and Vacha, R. 2006. Litavka River alluvium as a model area heavily polluted with potentially risk elements. Pp. 267–298 in J. L. Morel, J. L., Echevarria, G., and Goncharova, N. eds. Phytoremediation of metal-contaminated soils. Dordrecht: Springer.
- Campbell, C. D., Warren, A., Cameron, C. M., and Hope, S. J. 1997. Direct toxicity assessment of two soils amended with sewage sludge contaminated with heavy metals using a protozoan (Colpoda steinii) bioassay. Chemosphere 34:501–514.
- Chapman, E. E. V., Dave, G., and Murimboh, J. D. 2013. A review of metal (Pb and Zn) sensitive and pH tolerant bioassay organisms for risk screening of metal-contaminated acidic soils. Environmental Pollution 179:326–342.
- Cobb, N. A. 1918. Estimating the nematode population of the soil. Agric Tech Circ Bur Pl Ind US Dep Agric No.1 48 pp
- Dlouhá, Š., Petrovský, E., Kapička, A., Borůvka, L., Ash, C., and Drábek, O. 2013. Investigation of polluted alluvial soils by magnetic susceptibility methods: A case study of the Litavka River. Soil and Water Research 8:151–157.
- Fajardo, C., Costa, G., Nande, M., Martín, C., Martín, M., and Sánchez-Fortún, S. 2019. Heavy metals immobilization capability of two iron-based nanoparticles (nZVI and Fe3O4): Soil and freshwater bioassays to assess ecotoxicological impact. Science of the Total Environment 656:421–432.
- Faměra, M., Kotková, K., Tůmová, Š., Elznicová, J., and Grygar, T. M. 2018. Pollution distribution in floodplain structure visualised by electrical resistivity imaging in the floodplain of the Litavka River, the Czech Republic. Catena 165:157–172.
- Ferris, H. 2010. Form and function: metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology 46:97–104.
- Ferris, H., Bongers, T., and De Goede, R. G. M. 2001. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Applied Soil Ecology 18:13–29.
- Fröhlichová, A., Száková, J., Najmanová, J., and Tlustoš, P. 2018. An assessment of the risk of element contamination of urban and industrial areas using Taraxacum sect. Ruderalia as a bioindicator. Environmental Monitoring and Assessment 190:1–14.
- Gutiérrez, C., Fernández, C., Escuer, M., Campos-Herrera, R., Rodríguez, M. E. B., Carbonell, G., and Martín, J. A. R. 2016. Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity. Environmental Pollution 213:184–194.
- Háněl, L. 2004. Colonization of chemical factory wastes by soil nematodes. Pedobiologia 48:373–381.
- Kašpárek, L. 1984. About the floods of 1872 and 1981 on Litavka River and their importance for estimation of Nyear floods. Práce a Studie ČHMÚ 7:1– 56 In Czech.
- Kebonye, N. M., Eze, P. N., John, K., Agyeman, P. C., Němeček, K., and Borůvka, L. 2021. An in-depth human health risk assessment of potentially toxic elements in highly polluted riverine soils, Příbram (Czech Republic). Environmental Geochemistry and Health 44:369–385.
- Korthals, G. W., Bongers, M., Fokkema, A., Dueck, T. A., and Lexmond, T. M. 2000. Joint toxicity of copper and zinc to a terrestrial nematode community in an acid sandy soil. Ecotoxicology 9:219–228.
- Kotková, K., Nováková, T., Tůmová, Š., Kiss, T., Popelka, J., and Faměra, M. 2019. Migration of risk elements within the floodplain of the Litavka River, the Czech Republic. Geomorphology 329:46–57.
- Li, Q., Jiang, Y., and Liang, W. J. 2006. Effect of heavy metals on soil nematode communities in the vicinity of a metallurgical factory. Journal of Environmental Sciences 18:323–328.
- Martinez, J. G., Torres, M. A., dos Santos, G., and Moens, T. 2018. Influence of heavy metals on nematode community structure in deteriorated soil by gold mining activities in Sibutad, southern Philippines. Ecological Indicators 91:712–721.
- Mayerová, M., Petrová, Š., Madaras, M., Lipavský, J., Šimon, T., and Vaněk, T. 2017. Non-enhanced phytoextraction of cadmium, zinc, and lead by high-yielding crops. Environmental Science and Pollution Research 24:14706–14716.
- Nisa, R. U., Tantray, A. Y., Kouser, N., Allie, K. A., Wani, S. M., Alamri, S. A., and Shah, A. A. 2021. Influence of ecological and edaphic factors on biodiversity of soil nematodes. Saudi Journal of Biological Sciences 28:3049–3059.
- Park, B. Y., Lee, J. K., Ro, H. M., and Kim, Y. H. 2011. Effects of heavy metal contamination from an abandoned mine on nematode community structure as an indicator of soil ecosystem health. Applied Soil Ecology 51:17–24.
- Paton, G. I., Viventsova, E., Kumpene, J., Wilson, M. J., Weitz, H. J., and Dawson, J. J. 2006. An ecotoxicity assessment of contaminated forest soils from the Kola Peninsula. Science of the Total Environment 355:106–117.
- Pen-Mouratov, S., Shukurov, N., and Steinberger, Y. 2008. Influence of industrial heavy metal pollution on soil free-living nematode population. Environmental Pollution 152:172–183.
- Quevauviller, P., Ure, A., Muntau, H., and Griepink, B. 1993. Improvement of analytical measurements within the BCR-programme: Single and sequential extraction procedures applied to soil and sediment analysis. International Journal of Environmental Analytical Chemistry 51:129–134.
- Renčo, M., and Čerevková, A. 2015. Long-term effects of a wildfire on the soil nematode communities in the spruce forest ecosystem of High Tatra National Park. International Journal of Wildland Fire 24:702–711.
- Renčo, M., Čerevková, A., Homolová, Z., and Gömöryová, E. 2015. Long-term effects on soil nematode community structure in spruce forests of removing or not removing fallen trees after a windstorm. Forest Ecology and Management 356:243–252.
- Rodríguez Martín, J. A., Gutiérrez, C., Escuer, M., García-González, M. T., Campos-Herrera, R., and Águila, N. 2014. Effect of mine tailing on the spatial variability of soil nematodes from lead pollution in La Union (Spain). Science of the Total Environment 473:518–529.
- Šalamún, P., Kucanová, E., Brázová, T., Miklisová, D., Renčo, M., and Hanzelová, V. 2014. Diversity and food web structure of nematode communities under high soil salinity and alkaline pH. Ecotoxicology 23:1367–1376.
- Šalamún, P., Renčo, M., Kucanová, E., Brázová, T., Papajová, I., Miklisová, D., and Hanzelová, V. 2012. Nematodes as bioindicators of soil degradation due to heavy metals. Ecotoxicology 21:2319–2330.
- Sánchez-Moreno, S., Camargo, J. A., and Navas, A. 2006. Ecotoxicological assessment of the impact of residual heavy metals on soil nematodes in the Guadiamar River Basin (Southern Spain). Environmental Monitoring and Assessment 116:245–262.
- Sánchez-Moreno, S., and Navas, A. 2007. Nematode diversity and food web condition in heavy metal polluted soils in a river basin in southern Spain. European Journal of Soil Biology 43:166–179.
- Seinhorst, J. W. 1962. On the killing, fixation and transferring to glycerine of nematodes. Nematologica 8:29–32.
- Shannon, C. E., and Weaver, W. 1949. The mathematical theory of information. Urbana: University of Illinois Press, 97:128–164.
- Shao, Y., Zhang, W., Shen, J., Zhou, L., Xia, H., Shu, W., and Fu, S. 2008. Nematodes as indicators of soil recovery in tailings of a lead/zinc mine. Soil Biology and Biochemistry 40:2040–2046.
- Sharma, R. K., Agrawal, M., and Marshall, F. 2007. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicology and Environmental Safety 66:258–266.
- Sieriebriennikov, B., Ferris, H., and de Goede, R. G. M. 2014. NINJA: An automated calculation system for nematode-based biological monitoring. European Journal Soil Biology 61:90–93.
- Smit, C. E., Schouten, A. J., Van den Brink, P. J., Van Esbroek, M. L. P., and Posthuma, L. 2002. Effects of zinc contamination on a natural nematode community in outdoor soil mesocosms. Archives of Environmental Contamination and Toxicology 42:205–216.
- Ter Braak, C. J. F., and Šmilauer, P. 2012. Canoco reference manual and user´s guide: software for ordination (version 5.0). Microcomputer Power äIthaca, NY, USA), 496 pp.
- TIBCO Software Inc. 2020. Data Science Workbench, version 14. http://tibco.com
- van Benzooijen, J. 2006. Methods and techniques for nematology. Wagenningen University, The Netherlands, p. 112.
- Vaněk, A., Borůvka, L., Drábek, O., Mihaljevič, M., and Komárek, M. 2005. Mobility of lead, zinc and cadmium in alluvial soils heavily polluted by smelting industry. Plant Soil and Environment 51:316–321.
- Vyslouzilova, M., Tlustos, P., and Száková, J. 2003. Cadmium and zinc phytoextraction potential of seven clones of Salix spp. planted on heavy metal contaminated soils. Plant Soil and Environment 49:542–547.
- Yeates, G. W. 1994. Modification and qualification of the nematode maturity index. Pedobiologia 38: 97–101.
- Yeates, G. W., Bongers, T., De Goede, R. G., Freckman, D. W., and Georgieva, S. 1993. Feeding habits in soil nematode families and genera – An outline for soil ecologists. Journal of Nematology 25:315.
- Žák, K., Rohovec, J., and Navrátil, T. 2009. Fluxes of heavy metals from a highly polluted watershed during flood events: A case study of the Litavka River, Czech Republic. Water, Air, and Soil Pollution 203:343–358.
- Zhao, J., and Neher, D. A. 2013. Soil nematode genera that predict specific types of disturbance. Applied Soil Ecology 64:135–141.