Have a personal or library account? Click to login
Cycling exercise efficiency and economy: Exploring the role of phase angle Cover

Cycling exercise efficiency and economy: Exploring the role of phase angle

Open Access
|Dec 2025

References

  1. Yamada Y, Yoshida T, Murakami H, Kawakami R, Gando Y, Ohno H, et al. Phase angle obtained via bioelectrical impedance analysis and objectively measured physical activity or exercise habits. Sci Rep 12: 1–8. https://doi.org/10.1038/s41598-022-21095-6
  2. Koçak FÖK, Savaş S, Kilavuz A, Çavdar S. Relationship of Phase Angle with Sarcopenia Components and Comprehensive Geriatric Assessment in Physically Independent Older Adults. Eur J Geriatric Gerontol. 2024;6(3):208–15. https://doi.org/10.4274/ejgg.galenos.2024.2024-9-11
  3. Lukaski HC, Talluri A. Phase angle as an index of physiological status: validating bioelectrical assessments of hydration and cell mass in health and disease. Reviews in Endocrine and Metabolic Disorders. 2023;24(3):371–9. https://doi.org/10.1007/s11154-022-09764-3
  4. Bongiovanni T, Rossi A, Trecroci A, Martera G, Iaia FM, Alberti G, et al. Regional bioelectrical phase angle is more informative than whole-body phase angle for monitoring neuromuscular performance: a pilot study in elite young soccer players. Sports. 2022;10(5):66. https://doi.org/10.3390/sports10050066
  5. Oliveira Silvino V, Raffaela Barbosa Barros K, Machado Brito F, Matheus Dias Magalhães F, Augusto Ferreira Carioca A, César Carneiro Loureiro A, et al. Phase angle as an indicator of body composition and physical performance in handball players. BMC Sports Science, Medicine and Rehabilitation. 2024;16(1):114. https://doi.org/10.1186/s13102-024-00899-1
  6. Marini E, Campa F, Buffa R, Stagi S, Matias CN, Toselli S, et al. Phase angle and bioelectrical impedance vector analysis in the evaluation of body composition in athletes. Clinical Nutrition. 2020;39(2):447–54. https://doi.org/10.1016/j.clnu.2019.02.016
  7. da Silva BR, Orsso CE, Gonzalez MC, Sicchieri JMF, Mialich MS, Jordao AA, et al. Phase angle and cellular health: inflammation and oxidative damage. Reviews in Endocrine and Metabolic Disorders. 2023;24(3):543–62. https://doi.org/10.1007/s11154-022-09775-0
  8. Ward LC. Bioelectrical impedance analysis for body composition assessment: reflections on accuracy, clinical utility, and standardisation. European Journal of Clinical Nutrition. 2019;73(2):194–9. https://doi.org/10.1038/s41430-018-0335-3
  9. Cirillo E, Pompeo A, Cirillo FT, Vilaça-Alves J, Costa P, Ramirez-Campillo R, et al. Relationship between Bioelectrical Impedance Phase Angle and Upper and Lower Limb muscle strength in athletes from several sports: a systematic review with Meta-analysis. Sports. 2023;11(5):107. https://doi.org/10.3390/sports11050107
  10. Di Vincenzo O, Marra M, Scalfi L. Bioelectrical impedance phase angle in sport: A systematic review. Journal of the International Society of Sports Nutrition. 2019;16(1):49. https://doi.org/10.1186/s12970-019-0319-2
  11. Matias CN, Campa F, Nunes CL, Francisco R, Jesus F, Cardoso M, et al. Phase angle is a marker of muscle quantity and strength in overweight/obese former athletes. International Journal of Environmental Research and Public Health. 2021;18(12):6649. https://doi.org/10.3390/ijerph18126649
  12. Yamada Y, Yoshida T, Murakami H, Kawakami R, Gando Y, Ohno H, et al. Phase angle obtained via bioelectrical impedance analysis and objectively measured physical activity or exercise habits. Scientific Reports. 2022;12(1):17274. https://doi.org/10.1038/s41598-022-21095-6
  13. Moseley L, Jeukendrup AE. The reliability of cycling efficiency. Medicine and Science in Sports and Exercise. 2001;33(4):621–7. https://doi.org/10.1097/00005768-200104000-00017
  14. Dimitrov VG, Dimitrov AG, editors. Effect of Changes in the Intracellular Resistivity of Skeletal Muscle Fibre on Intracellular and Extracellular Potentials. The International Symposium on Bioinformatics and Biomedicine; 2020: Springer.
  15. Giorgi A, Sanders D, Vicini M, Lukaski H, Gatterer H. Body fluid status, plasma volume change and its relationship to physical effort during a multistage professional road cycling race. International Journal of Performance Analysis in Sport. 2018;18(5):679–85. https://doi.org/10.1080/24748668.2018.1514564
  16. Sleboda DA, Roberts TJ. Internal fluid pressure influences muscle contractile force. Proceedings of the National Academy of Sciences. 2020;117(3):1772–8. https://doi.org/10.1073/pnas.1914433117
  17. Shih T-C, Huang H-W, Wei W-C, Horng T-L. Parametric analysis of effective tissue thermal conductivity, thermal wave characteristic, and pulsatile blood flow on temperature distribution during thermal therapy. International Communications in Heat and Mass Transfer. 2014;52:113–20. https://doi.org/10.1016/j.icheatmasstransfer.2014.01.019
  18. Arefmanesh A, Arani AAA, Emamifar A. Semi-analytical solutions for different non-linear models of dual phase lag equation in living tissues. International Communications in Heat and Mass Transfer. 2020;115:104596. https://doi.org/10.1016/j.icheatmasstransfer.2020.104596
  19. Sukstanskii AL, Yablonskiy DA. Theoretical model of temperature regulation in the brain during changes in functional activity. Proceedings of the National Academy of Sciences. 2006;103(32):12144–9. https://doi.org/10.1073/pnas.0604376103
  20. Schmalzriedt S, Jenne M, Mauch K, Reuss M. Integration of physiology and fluid dynamics. Process Integration in Biochemical Engineering. 2003:19–68. https://doi.org/10.1007/3-540-36782-9_2
  21. Ronquist G, Waldenström A. Imbalance of plasma membrane ion leak and pump relationship as a new aetiological basis of certain disease states. Journal of Internal Medicine. 2003;254(6):517–26. https://doi.org/10.1111/j.1365-2796.2003.01235.x
  22. Facchi I, Di Trani N, Hernandez N, Joubert AL, Wood AM, Demarchi D, et al. Quantifying interstitial fluid by direct osmotic pressure measurements in vivo via telemetry-enabled Nanofluidic implants. Journal of Controlled Release. 2025;377:735–43. https://doi.org/10.1016/j.jconrel.2024.11.068
  23. da Costa Pereira JP, de Sousa Rebouças A, Prado CM, Gonzalez MC, Cabral PC, da Silva Diniz A, et al. Phase angle as a marker of muscle quality: A systematic review and meta-analysis. Clinical Nutrition. 2024;43(12):308–26. https://doi.org/10.1016/j.clnu.2024.11.008
  24. Yamada M, Kimura Y, Ishiyama D, Nishio N, Otobe Y, Tanaka T, et al. Phase angle is a useful indicator for muscle function in older adults. The Journal of Nutrition, Health & Aging. 2019;23(3):251–5. https://doi.org/10.1007/s12603-018-1151-0
  25. Abdelnour M, Berkachy R, Nasreddine L, Fares EJ. Bioelectrical Impedance Vector Analysis (BIVA) for Assessment of Hydration Status: A Comparison between Endurance and Strength University Athletes. Sensors (Basel). 2024;24(18). https://doi.org/10.3390/s24186024
  26. Weir JdV. New methods for calculating metabolic rate with special reference to protein metabolism. The Journal of Physiology. 1949;109(1–2):1–9. https://doi.org/10.1113/jphysiol.1949.sp004363
  27. Brooks GA, Gaesser GA, Poole DC. Efficiency of cycling exercise: misunderstandings of physiology. 2024. https://doi.org/10.1113/JP286770
  28. Fernández-Jiménez R, Dalla-Rovere L, García-Olivares M, Abuín-Fernández J, Sánchez-Torralvo FJ, Doulatram-Gamgaram VK, et al. Phase angle and handgrip strength as a predictor of disease-related malnutrition in admitted patients: 12-month mortality. Nutrients. 2022;14(9):1851. https://doi.org/10.3390/nu14091851
  29. Unterberger S, Aschauer R, Zöhrer PA, Draxler A, Aschauer M, Kager B, et al. Association of bioelectrical impedance phase angle with physical performance and nutrient intake of older adults. Nutrients. 2023;15(6):1458. https://doi.org/10.3390/nu15061458
  30. Norman K, Stobäus N, Pirlich M, Bosy-Westphal A. Bioelectrical phase angle and impedance vector analysis-clinical relevance and applicability of impedance parameters. Clinical nutrition. 2012;31(6):854–61. https://doi.org/10.1016/j.clnu.2012.05.008
  31. Dittmar M. Reliability and variability of bioimpedance measures in normal adults: effects of age, gender, and body mass. American Journal of Physical Anthropology: The Official Publication of the American Association of Physical Anthropologists. 2003;122(4):361–70. https://doi.org/10.1002/ajpa.10301
  32. Barbosa-Silva MCG, Barros AJ, Wang J, Heymsfield SB, Pierson Jr RN. Bioelectrical impedance analysis: population reference values for phase angle by age and sex. The American Journal of Clinical Nutrition. 2005;82(1):49–52. https://doi.org/10.1093/ajcn/82.1.49
  33. Coyle EF. Physiological determinants of endurance exercise performance. Journal of Science and Medicine in Sport. 1999;2(3):181–9. https://doi.org/10.1016/S1440-2440(99)80172-8
  34. Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Statistics in Medicine. 2006;25(1):127–41. https://doi.org/10.1002/sim.2331
  35. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, et al. Bioelectrical impedance analysis-part II: utilization in clinical practice. Clinical Nutrition. 2004;23(6):1430–53. https://doi.org/10.1016/j.clnu.2004.09.012
  36. Annunziata G, Paoli A, Frias-Toral E, Marra S, Campa F, Verde L, et al. Use of phase angle as an indicator of overtraining in sport and physical training. Journal of Translational Medicine. 2024;22:1084. https://doi.org/10.1186/s12967-024-05918-w
Language: English
Page range: 129 - 134
Submitted on: Oct 23, 2025
Published on: Dec 12, 2025
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Elie-Jacques Fares, Sarah Zaki, Jean Abi Saab, published by University of Oslo
This work is licensed under the Creative Commons Attribution 4.0 License.