Have a personal or library account? Click to login
Skin layer classification by feedforward neural network in bioelectrical impedance spectroscopy Cover

Skin layer classification by feedforward neural network in bioelectrical impedance spectroscopy

Open Access
|Aug 2023

References

  1. Nicander I, Ollmar S. Electrical Bioimpedance Related to Structural Differences and Reactions in Skin and Oral Mucosa. Ann New York Acad Sci. 1999;873(1):221–6. https://doi.org/10.1111/j.1749-6632.1999.tb09470.x
  2. Abe Y, Nishizawa M. Electrical aspects of skin as a pathway to engineering skin devices. APL Bioeng. 2021;5(4). https://doi.org/10.1063/5.0064529
  3. Rifai IN, Baidillah MR, Wicaksono R, Akita S, Takei M. Quantification of dermis sodium concentration in skin layers by power spectral density drop of square-wave electrical impedance spectroscopy (PSDd-sEIS). Meas Sci Technol. 2023;34(7):74006. https://doi.org/10.1088/1361-6501/acc752
  4. Uchiyama T, Ishigame S, Niitsuma J, Aikawa Y, Ohta Y. Multi-frequency bioelectrical impedance analysis of skin rubor with two-electrode technique. J Tissue Viability. 2008;17(4):110–4. https://doi.org/10.1016/j.jtv.2008.01.002
  5. Braun RP, Mangana J, Goldinger S, French L, Dummer R, Marghoob AA. Electrical impedance spectroscopy in skin cancer diagnosis. Dermatol Clin. 2017;35(4):489–93. https://doi.org/10.1016/j.det.2017.06.009
  6. Nyström J, Lindholm-Sethson B, Stenberg L, Ollmar S, Eriksson JW, Geladi P. Combined near-infrared spectroscopy and multifrequency bio-impedance investigation of skin alterations in diabetes patients based on multivariate analyses. Med Biol Eng Comput. 2003;41(3):324–9. https://doi.org/10.1007/BF02348438
  7. Nicander I, Ollmar S, Rozell BL, Eek A, Emtestam L. Electrical impedance measured to five skin depths in mild irritant dermatitis induced by sodium lauryl sulphate. Br J Dermatol. 1995;132(5):718–24. https://doi.org/10.1111/j.1365-2133.1995.tb00716.x
  8. Emtestam L, Ollmar S. Electrical impedance index in human skin: measurements after occlusion, in 5 anatomical regions and in mi Id irritant contact dermatitis. Contact Dermatitis. 1993;28(2):104–8. https://doi.org/10.1111/j.1600-0536.1993.tb03352.x
  9. Martinsen ØG, Grimnes S, Haug E. Measuring depth depends on frequency in electrical skin impedance measurements. Ski Res Technol. 1999;5(3):179–81. https://doi.org/10.1111/j.1600-0846.1999.tb00128.x
  10. Arpaia P, Cesaro U, Moccaldi N. A bioimpedance meter to measure drug in transdermal delivery. IEEE Trans Instrum Meas. 2018;67(10):2324–31. https://doi.org/10.1109/TIM.2018.2817399
  11. Andreasen N, Crandall H, Brimhall O, Miller B, Perez-Tamayo J, Martinsen OG, et al. Skin Electrical Resistance as a Diagnostic and Therapeutic Biomarker of Breast Cancer Measuring Lymphatic Regions. IEEE Access. 2021;9:152322–32. https://doi.org/10.1109/ACCESS.2021.3123569
  12. Gessert N, Bengs M, Schlaefer A. Melanoma detection with electrical impedance spectroscopy and dermoscopy using joint deep learning models. In: Medical Imaging 2020: Computer-Aided Diagnosis. SPIE; 2020. p. 265–71. https://doi.org/10.1117/12.2548974
  13. Kawahara J, Daneshvar S, Argenziano G, Hamarneh G. Seven-point checklist and skin lesion classification using multitask multimodal neural nets. IEEE J Biomed Heal informatics. 2018;23(2):538–46. https://doi.org/10.1109/JBHI.2018.2824327
  14. Barragán-Moreno A, Schaltz E, Gismero A, Stroe DI. Capacity State-of-Health Estimation of Electric Vehicle Batteries Using Machine Learning and Impedance Measurements. Electron. 2022;11(9). https://doi.org/10.3390/electronics11091414
  15. Van Haeverbeke M, Stock M, De Baets B. Equivalent Electrical Circuits and Their Use Across Electrochemical Impedance Spectroscopy Application Domains. IEEE Access. 2022;10:51363–51379. https://doi.org/10.1109/ACCESS.2022.3174067
  16. Wan TH, Saccoccio M, Chen C, Ciucci F. Influence of the Discretization Methods on the Distribution of Relaxation Times Deconvolution: Implementing Radial Basis Functions with DRTtools. Vol. 184, Electrochimica Acta. 2015;184:483–99. https://doi.org/10.1016/j.electacta.2015.09.097
  17. Ramirez-Chavarria RG, Sanchez-Perez C, Romero-Ornelas L, Ramon-Gallegos E. Time-Constant-Domain Spectroscopy: An Impedance-Based Method for Sensing Biological Cells in Suspension. IEEE Sens J. 2021;21(1):185–92. https://doi.org/10.1109/JSEN.2020.3014569
  18. Ollmar S. Methods of information extraction from impedance spectra of biological tissue, in particular skin and oral mucosa-a critical review and suggestions for the future. Bioelectrochemistry Bioenerg. 1998;45(2):157–60. https://doi.org/10.1016/S0302-4598(98)00082-8
  19. Oz A, Hershkovitz S, Belman N, Tal-Gutelmacher E, Tsur Y. Analysis of impedance spectroscopy of aqueous supercapacitors by evolutionary programming: finding DFRT from complex capacitance. Solid State Ionics. 2016;288:311–4. https://doi.org/10.1016/j.ssi.2015.11.008
  20. Tuncer E, Macdonald JR. Comparison of methods for estimating continuous distributions of relaxation times. J Appl Phys. 2006;99(7):74106. https://doi.org/10.1063/1.2188053
  21. Schichlein H, Müller AC, Voigts M, Krügel A, Ivers-Tiffée E. Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells. J Appl Electrochem. 2002;32(8):875–82. https://doi.org/10.1023/A:1020599525160
  22. Sonn V, Leonide A, Ivers-Tiffée E. Combined deconvolution and CNLS fitting approach applied on the impedance response of technical Ni/8YSZ cermet electrodes. J Electrochem Soc. 2008;155(7):B675. https://doi.org/10.1149/1.2908860
  23. Dierickx S, Weber A, Ivers-Tiffée E. How the distribution of relaxation times enhances complex equivalent circuit models for fuel cells. Electrochim Acta. 2020;355:136764. https://doi.org/10.1016/j.electacta.2020.136764
  24. Somersalo E, Cheney M, Isaacson D. Existence and uniqueness for electrode models for electric current computed tomography. SIAM J Appl Math. 1992;52(4):1023–40. https://doi.org/10.1137/0152060
  25. Yamamoto T, Yamamoto Y. Electrical properties of the epidermal stratum corneum. Med Biol Eng. 1976;14(2):151–8. https://doi.org/10.1007/BF02478741
  26. Tsai B, Xue H, Birgersson E, Ollmar S, Birgersson U. Dielectrical properties of living epidermis and dermis in the frequency range from 1 kHz to 1 MHz. J Electr Bioimpedance. 2019;10(1):14–23. https://doi.org/10.2478/joeb-2019-0003
  27. Andreuccetti D, Fossi R, Petrucci C. An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz. IFAC-CNR, Florence (Italy). IFAC-CNR; 1997.
  28. Summerfield A, Meurens F, Ricklin ME. The immunology of the porcine skin and its value as a model for human skin. Mol Immunol. 2015;66(1):14–21. https://doi.org/10.1016/j.molimm.2014.10.023
  29. Meyer W, Schwarz R, Neurand K. The skin of domestic mammals as a model for the human skin, with special reference to the domestic pig1. In: Skin-drug application and evaluation of environmental hazards. Karger Publishers; 1978. p. 39–52. https://doi.org/10.1159/000401274
  30. Debeer S, Le Luduec JB, Kaiserlian D, Laurent P, Nicolas JF, Dubois B, et al. Comparative histology and immunohistochemistry of porcine versus human skin. Eur J Dermatology. 2013;23(4):456–66. https://doi.org/10.1684/ejd.2013.2060
  31. Karacolak T, Cooper R, Unlu ES, Topsakal E. Dielectric properties of porcine skin tissue and in vivo testing of implantable antennas using pigs as model animals. IEEE Antennas Wirel Propag Lett. 2012;11:1686–9. https://doi.org/10.1109/LAWP.2013.2241722
  32. Wake K, Sasaki K, Watanabe S. Conductivities of epidermis, dermis, and subcutaneous tissue at intermediate frequencies. Phys Med Biol. 2016;61(12):4376–89. https://doi.org/10.1088/0031-9155/61/12/4376
  33. Pessoa D, Rocha BM, Cheimariotis GA, Haris K, Strodthoff C, Kaimakamis E, et al. Classification of Electrical Impedance Tomography Data Using Machine Learning. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). 2021. p. 349–53. https://doi.org/10.1109/EMBC46164.2021.9629961
  34. Rifai IN, Baidillah MR, Wicaksono R, Akita S, Takei M. Sodium concentration imaging in dermis layer by square-wave open electrical impedance tomography (SW-oEIT) with spatial voltage thresholding (SVT). Biomed Phys Eng Express. 2023;9(4):45013. https://doi.org/10.1088/2057-1976/acd4c6
  35. Kim MS, Cho Y, Seo ST, Son CS, Park HJ, Kim YN. A new method for non-invasive measurement of skin in the low frequency range. Healthc Inform Res. 2010;16(3):143–8. https://doi.org/10.4258/hir.2010.16.3.143
  36. Ramos A, Bertemes-Filho P. Numerical sensitivity modeling for the detection of skin tumors by using tetrapolar probe. Electromagn Biol Med. 2011;30(4):235–45. https://doi.org/10.3109/15368378.2011.589555
  37. Ferreira DM, Silva CS, Souza MN. Electrical impedance model for evaluation of skin irritation in rabbits and humans. Ski Res Technol. 2007;13(3):259–67. https://doi.org/10.1111/j.1600-0846.2007.00217.x
  38. Luo X, Zhou Y, Smart T, Grossman D, Sanchez B. Electrical Characterization of Basal Cell Carcinoma Using a Handheld Electrical Impedance Dermography Device. JID Innov. 2022;2(1):100075. https://doi.org/10.1016/j.xjidi.2021.100075
  39. Sarac E, Meiwes A, Eigentler TK, Forchhammer S, Kofler L, Häfner HM, et al. Diagnostic accuracy of electrical impedance spectroscopy in non-melanoma skin cancer. Acta Derm Venereol. 2020;100(18):1–5. https://doi.org/10.2340/00015555-3689
Language: English
Page range: 19 - 31
Submitted on: Jul 4, 2023
Accepted on: Aug 5, 2023
Published on: Aug 10, 2023
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Kiagus Aufa Ibrahim, Marlin Ramadhan Baidillah, Ridwan Wicaksono, Masahiro Takei, published by University of Oslo
This work is licensed under the Creative Commons Attribution 4.0 License.