References
- Nicander I, Ollmar S. Electrical Bioimpedance Related to Structural Differences and Reactions in Skin and Oral Mucosa. Ann New York Acad Sci. 1999;873(1):221–6. https://doi.org/10.1111/j.1749-6632.1999.tb09470.x
- Abe Y, Nishizawa M. Electrical aspects of skin as a pathway to engineering skin devices. APL Bioeng. 2021;5(4). https://doi.org/10.1063/5.0064529
- Rifai IN, Baidillah MR, Wicaksono R, Akita S, Takei M. Quantification of dermis sodium concentration in skin layers by power spectral density drop of square-wave electrical impedance spectroscopy (PSDd-sEIS). Meas Sci Technol. 2023;34(7):74006. https://doi.org/10.1088/1361-6501/acc752
- Uchiyama T, Ishigame S, Niitsuma J, Aikawa Y, Ohta Y. Multi-frequency bioelectrical impedance analysis of skin rubor with two-electrode technique. J Tissue Viability. 2008;17(4):110–4. https://doi.org/10.1016/j.jtv.2008.01.002
- Braun RP, Mangana J, Goldinger S, French L, Dummer R, Marghoob AA. Electrical impedance spectroscopy in skin cancer diagnosis. Dermatol Clin. 2017;35(4):489–93. https://doi.org/10.1016/j.det.2017.06.009
- Nyström J, Lindholm-Sethson B, Stenberg L, Ollmar S, Eriksson JW, Geladi P. Combined near-infrared spectroscopy and multifrequency bio-impedance investigation of skin alterations in diabetes patients based on multivariate analyses. Med Biol Eng Comput. 2003;41(3):324–9. https://doi.org/10.1007/BF02348438
- Nicander I, Ollmar S, Rozell BL, Eek A, Emtestam L. Electrical impedance measured to five skin depths in mild irritant dermatitis induced by sodium lauryl sulphate. Br J Dermatol. 1995;132(5):718–24. https://doi.org/10.1111/j.1365-2133.1995.tb00716.x
- Emtestam L, Ollmar S. Electrical impedance index in human skin: measurements after occlusion, in 5 anatomical regions and in mi Id irritant contact dermatitis. Contact Dermatitis. 1993;28(2):104–8. https://doi.org/10.1111/j.1600-0536.1993.tb03352.x
- Martinsen ØG, Grimnes S, Haug E. Measuring depth depends on frequency in electrical skin impedance measurements. Ski Res Technol. 1999;5(3):179–81. https://doi.org/10.1111/j.1600-0846.1999.tb00128.x
- Arpaia P, Cesaro U, Moccaldi N. A bioimpedance meter to measure drug in transdermal delivery. IEEE Trans Instrum Meas. 2018;67(10):2324–31. https://doi.org/10.1109/TIM.2018.2817399
- Andreasen N, Crandall H, Brimhall O, Miller B, Perez-Tamayo J, Martinsen OG, et al. Skin Electrical Resistance as a Diagnostic and Therapeutic Biomarker of Breast Cancer Measuring Lymphatic Regions. IEEE Access. 2021;9:152322–32. https://doi.org/10.1109/ACCESS.2021.3123569
- Gessert N, Bengs M, Schlaefer A. Melanoma detection with electrical impedance spectroscopy and dermoscopy using joint deep learning models. In: Medical Imaging 2020: Computer-Aided Diagnosis. SPIE; 2020. p. 265–71. https://doi.org/10.1117/12.2548974
- Kawahara J, Daneshvar S, Argenziano G, Hamarneh G. Seven-point checklist and skin lesion classification using multitask multimodal neural nets. IEEE J Biomed Heal informatics. 2018;23(2):538–46. https://doi.org/10.1109/JBHI.2018.2824327
- Barragán-Moreno A, Schaltz E, Gismero A, Stroe DI. Capacity State-of-Health Estimation of Electric Vehicle Batteries Using Machine Learning and Impedance Measurements. Electron. 2022;11(9). https://doi.org/10.3390/electronics11091414
- Van Haeverbeke M, Stock M, De Baets B. Equivalent Electrical Circuits and Their Use Across Electrochemical Impedance Spectroscopy Application Domains. IEEE Access. 2022;10:51363–51379. https://doi.org/10.1109/ACCESS.2022.3174067
- Wan TH, Saccoccio M, Chen C, Ciucci F. Influence of the Discretization Methods on the Distribution of Relaxation Times Deconvolution: Implementing Radial Basis Functions with DRTtools. Vol. 184, Electrochimica Acta. 2015;184:483–99. https://doi.org/10.1016/j.electacta.2015.09.097
- Ramirez-Chavarria RG, Sanchez-Perez C, Romero-Ornelas L, Ramon-Gallegos E. Time-Constant-Domain Spectroscopy: An Impedance-Based Method for Sensing Biological Cells in Suspension. IEEE Sens J. 2021;21(1):185–92. https://doi.org/10.1109/JSEN.2020.3014569
- Ollmar S. Methods of information extraction from impedance spectra of biological tissue, in particular skin and oral mucosa-a critical review and suggestions for the future. Bioelectrochemistry Bioenerg. 1998;45(2):157–60. https://doi.org/10.1016/S0302-4598(98)00082-8
- Oz A, Hershkovitz S, Belman N, Tal-Gutelmacher E, Tsur Y. Analysis of impedance spectroscopy of aqueous supercapacitors by evolutionary programming: finding DFRT from complex capacitance. Solid State Ionics. 2016;288:311–4. https://doi.org/10.1016/j.ssi.2015.11.008
- Tuncer E, Macdonald JR. Comparison of methods for estimating continuous distributions of relaxation times. J Appl Phys. 2006;99(7):74106. https://doi.org/10.1063/1.2188053
- Schichlein H, Müller AC, Voigts M, Krügel A, Ivers-Tiffée E. Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells. J Appl Electrochem. 2002;32(8):875–82. https://doi.org/10.1023/A:1020599525160
- Sonn V, Leonide A, Ivers-Tiffée E. Combined deconvolution and CNLS fitting approach applied on the impedance response of technical Ni/8YSZ cermet electrodes. J Electrochem Soc. 2008;155(7):B675. https://doi.org/10.1149/1.2908860
- Dierickx S, Weber A, Ivers-Tiffée E. How the distribution of relaxation times enhances complex equivalent circuit models for fuel cells. Electrochim Acta. 2020;355:136764. https://doi.org/10.1016/j.electacta.2020.136764
- Somersalo E, Cheney M, Isaacson D. Existence and uniqueness for electrode models for electric current computed tomography. SIAM J Appl Math. 1992;52(4):1023–40. https://doi.org/10.1137/0152060
- Yamamoto T, Yamamoto Y. Electrical properties of the epidermal stratum corneum. Med Biol Eng. 1976;14(2):151–8. https://doi.org/10.1007/BF02478741
- Tsai B, Xue H, Birgersson E, Ollmar S, Birgersson U. Dielectrical properties of living epidermis and dermis in the frequency range from 1 kHz to 1 MHz. J Electr Bioimpedance. 2019;10(1):14–23. https://doi.org/10.2478/joeb-2019-0003
- Andreuccetti D, Fossi R, Petrucci C. An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz. IFAC-CNR, Florence (Italy). IFAC-CNR; 1997.
- Summerfield A, Meurens F, Ricklin ME. The immunology of the porcine skin and its value as a model for human skin. Mol Immunol. 2015;66(1):14–21. https://doi.org/10.1016/j.molimm.2014.10.023
- Meyer W, Schwarz R, Neurand K. The skin of domestic mammals as a model for the human skin, with special reference to the domestic pig1. In: Skin-drug application and evaluation of environmental hazards. Karger Publishers; 1978. p. 39–52. https://doi.org/10.1159/000401274
- Debeer S, Le Luduec JB, Kaiserlian D, Laurent P, Nicolas JF, Dubois B, et al. Comparative histology and immunohistochemistry of porcine versus human skin. Eur J Dermatology. 2013;23(4):456–66. https://doi.org/10.1684/ejd.2013.2060
- Karacolak T, Cooper R, Unlu ES, Topsakal E. Dielectric properties of porcine skin tissue and in vivo testing of implantable antennas using pigs as model animals. IEEE Antennas Wirel Propag Lett. 2012;11:1686–9. https://doi.org/10.1109/LAWP.2013.2241722
- Wake K, Sasaki K, Watanabe S. Conductivities of epidermis, dermis, and subcutaneous tissue at intermediate frequencies. Phys Med Biol. 2016;61(12):4376–89. https://doi.org/10.1088/0031-9155/61/12/4376
- Pessoa D, Rocha BM, Cheimariotis GA, Haris K, Strodthoff C, Kaimakamis E, et al. Classification of Electrical Impedance Tomography Data Using Machine Learning. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). 2021. p. 349–53. https://doi.org/10.1109/EMBC46164.2021.9629961
- Rifai IN, Baidillah MR, Wicaksono R, Akita S, Takei M. Sodium concentration imaging in dermis layer by square-wave open electrical impedance tomography (SW-oEIT) with spatial voltage thresholding (SVT). Biomed Phys Eng Express. 2023;9(4):45013. https://doi.org/10.1088/2057-1976/acd4c6
- Kim MS, Cho Y, Seo ST, Son CS, Park HJ, Kim YN. A new method for non-invasive measurement of skin in the low frequency range. Healthc Inform Res. 2010;16(3):143–8. https://doi.org/10.4258/hir.2010.16.3.143
- Ramos A, Bertemes-Filho P. Numerical sensitivity modeling for the detection of skin tumors by using tetrapolar probe. Electromagn Biol Med. 2011;30(4):235–45. https://doi.org/10.3109/15368378.2011.589555
- Ferreira DM, Silva CS, Souza MN. Electrical impedance model for evaluation of skin irritation in rabbits and humans. Ski Res Technol. 2007;13(3):259–67. https://doi.org/10.1111/j.1600-0846.2007.00217.x
- Luo X, Zhou Y, Smart T, Grossman D, Sanchez B. Electrical Characterization of Basal Cell Carcinoma Using a Handheld Electrical Impedance Dermography Device. JID Innov. 2022;2(1):100075. https://doi.org/10.1016/j.xjidi.2021.100075
- Sarac E, Meiwes A, Eigentler TK, Forchhammer S, Kofler L, Häfner HM, et al. Diagnostic accuracy of electrical impedance spectroscopy in non-melanoma skin cancer. Acta Derm Venereol. 2020;100(18):1–5. https://doi.org/10.2340/00015555-3689