Abstract
Conductivity change in skin layers has been classified by source indicator ok (k=1: Stratum corneum, k=2: Epidermis, k=3: Dermis, k=4: Fat, and k=5: Stratum corneum + Epidermis) trained from feedforward neural network (FNN) in bioelectrical impedance spectroscopy (BIS). In BIS studies, treating the skin as a bulk, limits the differentiation of conductivity changes in individual skin layers, however skin layer classification using FNN shows promise in accurately categorizing skin layers, which is essential for predicting source indicators ok and initiating skin dielectric characteristics diagnosis. The ok is trained by three main conceptual points which are (i) implementing FNN for predicting k in conductivity change, (ii) profiling four impedance inputs αξ consisting of magnitude input α|z|, phase angle input αθ, resistance input αR, and reactance input αx for filtering nonessential input, and (iii) selecting low and high frequency pair