Have a personal or library account? Click to login
Skin layer classification by feedforward neural network in bioelectrical impedance spectroscopy Cover

Skin layer classification by feedforward neural network in bioelectrical impedance spectroscopy

Open Access
|Aug 2023

Figures & Tables

Fig.1:

Schematic flow of skin layer classification of conductivity change
Schematic flow of skin layer classification of conductivity change

Fig. 2:

Electrical properties of skin, fat, and muscle.
Electrical properties of skin, fat, and muscle.

Fig. 3:

Nyquist plot based on numerical simulation of φs in the Δσ and D/H < 1 in all frequency range.
Nyquist plot based on numerical simulation of φs in the Δσ and D/H < 1 in all frequency range.

Fig. 4:

DRT results based on simulation of φs in the case of D/H < 1 in all frequency range.
DRT results based on simulation of φs in the case of D/H < 1 in all frequency range.

Fig. 5:

The comparison of FNN results related to feature extraction of αξ effect on bipolar and tetrapolar.
The comparison of FNN results related to feature extraction of αξ effect on bipolar and tetrapolar.

Fig. 6:

The comparison of FNN results related to feature extraction of αξ effect on bipolar and tetrapolar using four matrices profile.
The comparison of FNN results related to feature extraction of αξ effect on bipolar and tetrapolar using four matrices profile.

Fig. 7:

Experimental setup conditions with porcine skin.
Experimental setup conditions with porcine skin.

Fig. 8:

DRT results based on experiment with φs = Bipolar in all frequencies.
DRT results based on experiment with φs = Bipolar in all frequencies.

Fig. 9:

DRT results based on experiment with φs = Tetrapolar in all frequencies.
DRT results based on experiment with φs = Tetrapolar in all frequencies.

Fig. 10:

The confusion matrix shows the highest validation accuracy of experiments of porcine skin with FNN and four impedance inputs αξ.
The confusion matrix shows the highest validation accuracy of experiments of porcine skin with FNN and four impedance inputs αξ.

Fig. 11:

Comparison of sensitivity map distribution: bipolar and tetrapolar.
Comparison of sensitivity map distribution: bipolar and tetrapolar.

Experimental conditions

Configuration parameterMeasurement parameter
Injection pattern φsElectrode length ratio to skin thicknessδbConductivity-changed layerypConcentrationCNacl [mM]Frequency pair frlh$f_{r}^{lh}$ [kHz]

I. Bipolar

II. Tetrapolar

D/H < 1, D/H = 1, D/H > 1

Dermis (D) only

c1 = 15

c2 = 20;

c3 = 25;

c4 = 30;

c5 = 35;

f1lh=2&10;f2lh=2&35;f3lh=2&100;f4lh=2&225;f5lh=10&35;f6lh=10&100;f7lh=10&225;f8lh=35&100;f9lh=35&225;f10lh=100&225$\begin{array}{*{35}{l}} f_{1}^{lh}=2\And 10; \\ f_{2}^{lh}=2\And 35; \\ f_{3}^{lh}=2\And 100; \\ f_{4}^{lh}=2\And 225; \\ f_{5}^{lh}=10\And 35; \\ f_{6}^{lh}=10\And 100; \\ f_{7}^{lh}=10\And 225; \\ f_{8}^{lh}=35\And 100; \\ f_{9}^{lh}=35\And 225; \\ f_{10}^{lh}=100\And 225 \\ \end{array}$

Comparison studies of skin condition detection using only BIS or combined with machine learning algorithm_

NoAuthorSkin ConditionMachine Learning Algorithm & Data FeaturesFrequency Pair Selection & ReasonInjection Patterns
1Stig Ollmar [18]Oral mucosaNA & Ź, Θ´${\Theta }'$, Ŕ, and X ${X}'$20 [kHz] & 50 [kHz]: NABipolar
2Nicander et al. [7]Irritant dermatitisNA & Ź20 [kHz] & 1 [MHz]: NABipolar
3Ramos & Bertemes-Filho [36]Skin cancerNA & Electrical equivalent circuit100 [Hz] – 1 [MHz]:To analyze the tetrapolar probe’s sensitivities’ frequency response. It was discovered that frequency has little effect on sensitivity.Tetrapolar
4Ferreira et al. [37]Skin irritationNA & Resistance ratio from two depth locations20 [kHz] & 50 [kHz]:The ratio of total skin impedance obtained at low (20 [kHz]) and high frequencies (500 [kHz]) is the basis of the irritation indices.Bipolar
5Gessert et al. [12]Skin melanomaCNN and SVM & Ź and Images1 [kHz] − 2.5 [MHz]:Following the device’s frequency range.Bipolar
6Luo et al. [38]Skin cancerNA & Transversal and longitudinal of relative permittivity and conductivity8 – 256 [kHz]:For measurements of lesional and normal skin, intraclass correlation coefficient (ICC) conductivity values were low at 8 and 16 [kHz]. In contrast, relative permittivity ICC results displayed excellent repeatability at 16 [kHz].Tetrapolar
7Sarac et al. [39]Skin cancerNA & EIS Score1 [kHz] – 2.5 [MHz]:The extracellular environment affects resistance to low frequencies, whereas both the intracellular and extracellular environments influence readings at higher frequencies.Bipolar
8This studySkin layer classificationFNN & α|Z|, αθ, αR, and αXfrlh$f_{r}^{lh}$ are selected based on DRT results.Bipolar, Tetrapolar

Comparison of FNN accuracy Acc in terms of variation of frequency pair selection from experiment results_

Frequency pair frlh$f_{r}^{lh}$ [kHz]Bipolar Acc [%]Tetrapolar Acc [%]
f1lh=2&10$f_{1}^{lh}=2\And 10$44.11.2
f2lh=2&35$f_{2}^{lh}=2\And 35$80.617.6
f3lh=2&100$f_{3}^{lh}=2\And 100$56.516.5
f4lh=2&225$f_{4}^{lh}=2\And 225$40.610.0
f5lh=10&35$f_{5}^{lh}=10\And 35$88.890.0
f6lh=10&100$f_{6}^{lh}=10\And 100$90.684.1
f7lh=10&225$f_{7}^{lh}=10\And 225$61.232.4
f8lh=35&100$f_{8}^{lh}=35\And 100$60.690.6
f9lh=35&225$f_{9}^{lh}=35\And 225$55.325.3
f10lh=100&225$f_{10}^{lh}=100\And 225$68.223.5

Parameters for training data set

Configuration parameterMeasurement parameter
Injection pattern φsElectrode-length-to-skin-thickness ratio δbConductivity-changed layer ψpConductivity change Δσq [%]Frequency pair frlh$f_{r}^{lh}$ [kHz]

I. Bipolar

II. Tetrapolar

D/H < 1, D/H = 1, D/H > 1

Fixed electrode gap:

dg = 1 [mm]

Variable electrode diameter:

de = {1, 2, 3}[mm]

Electrode length:

D = dg + de

Fixed each layer thickness:

hS = 50 [μm], hE = 0.45 [mm],

hD = 2.5 [mm], hF = 5 [mm]

Fixed skin thickness:

H = hS + hE + hD + hF

ψ1 = Stratum Corneum only (S)

ψ2 = Epidermis (E) only

ψ3 = Dermis (D) only

ψ4 = Fat (F) only

ψ5 = S + E

ψ6 = E + D

ψ7 = D + F

ψ8 = S + E + D

ψ9 = E + D + F

ψ10 = S + E + D + F

Δσ1 = −20

Δσ2 = −17.5

Δσ3 = −15

Δσ4 = −12.5

Δσ5 = −10

Δσ6 = −7.5

Δσ7 = −5

Δσ8 = −2.5

Δσ9 = 0

Δσ10 = 2.5

Δσ11 = 5

Δσ12 = 7.5

Δσ13 = 10

Δσ14 = 12.5

Δσ15 = 15

Δσ16 = 17.5

Δσ17 = 20

f1lh=2&10f2lh=2&35f3lh=2&100f4lh=2&225f5lh=10&35f6lh=10&100f7lh=10&225f8lh=35&100f9lh=35&225f10lh=100&225 $\begin{array}{*{35}{l}} f_{1}^{lh}=2\And 10 \\ f_{2}^{lh}=2\And 35 \\ f_{3}^{lh}=2\And 100 \\ f_{4}^{lh}=2\And 225 \\ f_{5}^{lh}=10\And 35 \\ f_{6}^{lh}=10\And 100 \\ f_{7}^{lh}=10\And 225 \\ f_{8}^{lh}=35\And 100 \\ f_{9}^{lh}=35\And 225 \\ f_{10}^{lh}=100\And 225 \\ \end{array}$

Matrix profile of αξ

Matrix ProfileNumber of input features αξDetails
One matrix4Z´,θ´,R´,X´${Z}',{\theta }',{R}',{X}'$
Two matrices6Z´+θ´,Z´+R´,Z´+X´,θ´+R´,θ´+X´,R´+X´${Z}'+{\theta }',{Z}'+{R}',{Z}'+{X}',{\theta }'+{R}',{\theta }'+{X}',{R}'+{X}'$
Three matrices3Z´+θ´+R´,Z´+θ´+X´,θ´+R´+X´${Z}'+{\theta }'+{R}',{Z}'+{\theta }'+{X}',{\theta }'+{R}'+{X}'$
Four matrices1Z´+θ´+R´+X´${Z}'+{\theta }'+{R}'+{X}'$
Language: English
Page range: 19 - 31
Submitted on: Jul 4, 2023
Accepted on: Aug 5, 2023
Published on: Aug 10, 2023
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Kiagus Aufa Ibrahim, Marlin Ramadhan Baidillah, Ridwan Wicaksono, Masahiro Takei, published by University of Oslo
This work is licensed under the Creative Commons Attribution 4.0 License.