Have a personal or library account? Click to login
Electrical Impedance tomography – recent applications and developments Cover

Electrical Impedance tomography – recent applications and developments

Open Access
|Oct 2021

References

  1. R. L. Simone Carmignato, Wim Dewulf, Industrial X-Ray Computed Tomography. Springer; 1st ed., 2018.
  2. J. Purden, “Nuclear-medicine-2-Principles-and-technique-of-bone-scintigraphy,” Nurs. Times [online], vol. 115, no. 4, pp. 48–49, 2019.S.
  3. Luo and T. Zhou, "Superiorization of EM algorithm and its application in single-photon emission computed tomography (SPECT)," Inverse Probl. Imaging, vol. 8, no. 1, pp. 223-246, Feb. 2014. 10.3934/ipi.2014.8.223
  4. I. Fogelman, H. Van Der Wall, and G. Gnanasegaran, Radionuclide and hybrid bone imaging. Springer-Verlag Berlin Heidelberg, 2012. 10.1007/978-3-642-02400-9
  5. M. Weiger and K. P. Pruessmann, "Short-T2 MRI: Principles and recent advances," Progress in Nuclear Magnetic Resonance Spectroscopy, vol. 114-115. Elsevier B.V., pp. 237270, Oct. 01, 2019. 10.1016/j.pnmrs.2019.07.001
  6. H. Li, X. Meng, T. Wang, Y. Tang, and Y. Yin, "Breast masses in mammography classification with local contour features," Biomed. Eng. Online, vol. 16, no. 1, Apr. 2017. 10.1186/s12938-017-0332-0
  7. S. Leung, "Treatment of pediatric genitourinary malignancy with interstitial brachytherapy: Peter MacCallum Cancer Institute experience with four cases," Int. J. Radiat. Oncol. Biol. Phys., vol. 31, no. 2, pp. 393-398, Jan. 1995. 10.1016/0360-3016(94)E0127-6
  8. T. Fuchs, M. Kachelrieß, and W. A. Kalender, "Technical advances in multi-slice spiral CT," Eur. J. Radiol., vol. 36, no. 2, pp. 69-73, Nov. 2000. 10.1016/S0720-048X(00)00269-2
  9. A. Creditt, J. Tozer, M. Vitto, M. Joyce, and L. Taylor, Clinical Ultrasound. Springer International Publishing, 2018. 10.1007/978-3-319-68634-9
  10. J. J. Vaquero and P. Kinahan, "Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems," Annual Review of Biomedical Engineering, vol. 17. Annual Reviews Inc., pp. 385-414, Dec. 07, 2015. 10.1146/annurev-bioeng-071114-040723
  11. M. Dahlbom, Physics of PET and SPECT Imaging. CRC Press LLC, 2021.
  12. R. C. S. Brian M Dale, Mark A Brown, Ed., MRI: Basic Principles and Applications. Wiley-Blackwell, 2015.
  13. R. P. Henderson and J. G. Webster, "An Impedance Camera for Spatially Specific Measurements of the Thorax," IEEE Trans. Biomed. Eng., vol. BME-25, no. 3, pp. 250-254, 1978. 10.1109/TBME.1978.326329
  14. Y. Sigmen, “Conception d’un module d’électrodes actives pour un système de tomographie d’impédance électrique bifréquence,” École Polytechnique de Montréal, 2012.
  15. B. H. Brown and A. D. Seagar, "The Sheffield data collection system," Clin. Phys. Physiol. Meas., vol. 8, no. 4A, pp. 91-97, 1987. 10.1088/0143-0815/8/4A/012
  16. S. J. Singer and G. L. Nicolson, "The fluid mosaic model of the structure of cell membranes," Science, vol. 175, no. 4023, pp. 720-731, Feb. 1972. 10.1126/science.175.4023.720
  17. T. K. Bera and J. Nagaraju, "Electrical impedance tomography (EIT): A harmless medical imaging modality," in Medical Imaging: Concepts, Methodologies, Tools, and Applications, IGI Global, 2016, pp. 71-115. 10.4018/978-1-5225-0571-6.ch004
  18. A. Hartinger, “Détection du cancer de la peau par tomographie d’impédance électrique,” Polytechnique Montréal, 2012.
  19. T. Tamura, M. Tenhunen, T. Lahtinen, T. Repo, and H. P. Schwan, "Modelling of the dielectric properties of normal and irradiated skin," Phys. Med. Biol., vol. 39, no. 6, pp. 927-936, Jun. 1994. 10.1088/0031-9155/39/6/001
  20. L. A. Geddes and L. E. Baker, "The specific resistance of biological material-A compendium of data for the biomedical engineer and physiologist," Med. Biol. Eng., vol. 5, no. 3, pp. 271-293, May 1967. 10.1007/BF02474537
  21. H. Liu, “A High-Resolution Microscopic Electrical Impedance Imaging Modality: Scanning Impedance Imaging,” Ira A. Fulton College of Engineering and Technology, 2014.
  22. O. Darrigol, "Electrodynamics from Ampère to Einstein," Physics Today, vol. 55, no. 2, p. 53, Jan. 12, 2002. 10.1063/1.1461329
  23. L. Bernard, "Caractérisation électrique des tissus biologiques et calcul des phénomènes induits dans le corps humain par des champs électromagnétiques de fréquence inférieure au GHz," Ecole Centrale de Lyon ; Universidade Federal de Minas Gerais, Sep. 2007. Accessed: Jul. 05, 2021. [Online]. Available: https://tel.archives-ouvertes.fr/tel-00179791v3
  24. P. Grasland Mongrain, "Applications de la force de Lorentz," Université Claude Bernard - Lyon I, Dec. 2013. Accessed: Jul. 05, 2021. [Online]. Available: https://tel.archives-ouvertes.fr/tel-01160894
  25. H. McCann, G. Pisano, and L. Beltrachini, "Variation in Reported Human Head Tissue Electrical Conductivity Values," Brain Topogr., vol. 32, no. 5, pp. 825-858, Sep. 2019. 10.1007/s10548-019-00710-2
  26. B. H. Brown, "Electrical impedance tomography (EIT): a review," J. Med. Eng. Technol., vol. 27, no. 3, pp. 97-108, Jan. 2003. 10.1080/0309190021000059687
  27. J.-C. Gervais, "Système de tomographie d'impédance électrique modulaire et reconfigurable réalisé à l'aide d'un FPGA,” Polytechnique Montréal, 2013.
  28. T. K. Bera and N. Jampana, "A multifrequency constant current source suitable for Electrical Impedance Tomography (EIT)," in International Conference on Systems in Medicine and Biology, ICSMB 2010 - Proceedings, 2010, pp. 278-283. 10.1109/ICSMB.2010.5735387
  29. T. K. Bera, M. Saikia and J. Nagaraju, "A battery-based constant current source (Bb-CCS) for biomedical applications," 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), 2013, pp. 1-5, doi: 10.1109/ICCCNT.2013.6726810.
  30. W. R. B. Lionheart, "EIT reconstruction algorithms: Pitfalls, challenges and recent developments," in Physiological Measurement, Feb. 2004, vol. 25, no. 1, pp. 125-142. 10.1088/0967-3334/25/1/021
  31. L. Jing, S. Liu, L. Zhihong, and S. Meng, "An image reconstruction algorithm based on the extended Tikhonov regularization method for electrical capacitance tomography," Meas. J. Int. Meas. Confed., vol. 42, no. 3, pp. 368-376, Apr. 2009. 10.1016/j.measurement.2008.07.003
  32. M. H. F. Ribeiro, R. W. Dos Santos, L. P. S. Barra, and F. C. Peters, "Simulation study on the determination of cardiac ejection fraction by electrical impedance tomography using a hybrid heuristic approach," J. Med. Imaging Heal. Informatics, vol. 4, no. 1, pp. 113-121, 2014. 10.1166/jmihi.2014.1235
  33. T. K. Bera and J. Nagaraju, "Studies on thin film based flexible gold electrode arrays for resistivity imaging in electrical impedance tomography," Meas. J. Int. Meas. Confed., vol. 47, no. 1, pp. 264-286, Jan. 2014. 10.1016/j.measurement.2013.08.064
  34. Q. Wang, H. Wang, Z. Cui, and C. Yang, "Reconstruction of electrical impedance tomography (EIT) images based on the expectation maximum (EM) method," ISA Trans., vol. 51, no. 6, pp. 808-820, Nov. 2012. 10.1016/j.isatra.2012.04.011
  35. "Tomographie d'impédance électrique à l'aide d'une matrice de microélectrodes : vers l'imagerie des nerfs périphériques - TEL - Thèses en ligne." https://tel.archives-ouvertes.fr/tel-01580025 (accessed Jul. 06, 2021).
  36. G. Boverman et al., "Efficient simultaneous reconstruction of time-varying images and electrode contact impedances in electrical impedance tomography," IEEE Trans. Biomed. Eng., vol. 64, no. 4, pp. 795-806, Apr. 2017. 10.1109/TBME.2016.2578646
  37. S. Martin and C. T. M. Choi, "Electrical impedance tomography: A reconstruction method based on neural networks and particle swarm optimization," in IFMBE Proceedings, 2015, vol. 47, pp. 177-179. 10.1007/978-3-319-12262-5_49
  38. R. Hrabuska, M. Prauzek, M. Venclikova, and J. Konecny, "Image Reconstruction for Electrical Impedance Tomography: Experimental Comparison of Radial Basis Neural Network and Gauss - Newton Method," in IFAC-PapersOnLine, Jan. 2018, vol. 51, no. 6, pp. 438-443. 10.1016/j.ifacol.2018.07.114
  39. J. K. Seo and E. J. Woo, Nonlinear Inverse Problems in Imaging. John Wiley and Sons, 2012. 10.1002/9781118478141
  40. J. Kuen, E. J. Woo, and J. K. Seo, "Multi-frequency time-difference complex conductivity imaging of canine and human lungs using the KHU Mark1 EIT system," Physiol. Meas., vol. 30, no. 6, 2009. 10.1088/0967-3334/30/6/S10
  41. J. K. Seo, J. Lee, S. W. Kim, H. Zribi, and E. J. Woo, "Frequency-difference electrical impedance tomography (fdEIT): Algorithm development and feasibility study," Physiol. Meas., vol. 29, no. 8, pp. 929-944, Aug. 2008. 10.1088/0967-3334/29/8/006
  42. E. Y. Brovman, C. A. Foley, A. H. Shen, E. E. Whang, and R. D. Urman, "Intraoperative Ventilation Patterns in Morbidly Obese Patients Undergoing Laparoscopic Bariatric Surgery," J. Laparoendosc. Adv. Surg. Tech., vol. 28, no. 12, pp. 14631470, Dec. 2018. 10.1089/lap.2018.0297
  43. L. Cao et al., "Real-time imaging of infarction deterioration after ischemic stroke in rats using electrical impedance tomography," Physiol. Meas., vol. 41, no. 1, p. 015004, Feb. 2020. 10.1088/1361-6579/ab69ba
  44. C. Karagiannidis et al., "Regional expiratory time constants in severe respiratory failure estimated by electrical impedance tomography: A feasibility study," Crit. Care, vol. 22, no. 1, pp. 1-10, Sep. 2018. 10.1186/s13054-018-2137-3
  45. D. C. Barber, "Electrical Impedance Tomography," in The Biomedical Engineering Handbook, Second edi., J. D. Bronzino, Ed. CRC Press LLC, 2000.
  46. J. D. Bronzino, Biomedical Engineering Handbook. Taylor & Francis, 1999
  47. D. C. Barber and B. H. Brown, "Recent Developments in Applied Potential Tomography-APT," in Information Processing in Medical Imaging, Springer Netherlands, 1986, pp. 106-121. 10.1007/978-94-009-4261-5_9
  48. E. Teschner, M. Imhoff, and S. Leonhardt, Electrical Impedance Tomography: The realisation of regional ventilation monitoring. Drägerwerk AG & Co. KGaA, 2015.
  49. M. Y. Chen, G. Hu, W. He, Y. L. Yang, and J. Q. Zhai, "A reconstruction method for electrical impedance tomography using particle swarm optimization," in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2010, vol. 6329 LNCS, no. part 2, pp. 342-350. 10.1007/978-3-642-15597-0_38
  50. A. R. S. Feitosa, R. R. Ribeiro, V. A. F. Barbosa, R. E. de Souza and W. P. dos Santos, "Reconstruction of electrical impedance tomography images using chaotic ring-topology particle swarm optimization and non-blind search," 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2014, pp. 2618-2623. 10.1109/SMC.2014.6974322
  51. Liu, Ruilan et al. “Study on PSO-tGN algorithm of bio-electrical impedance tomography system.” Proceeding of the 11th World Congress on Intelligent Control and Automation (2014): 5808-5811. 10.1109/WCICA.2014.7053712
  52. M. GhasemAzar and B. V. Vahdat, "Error study of EIT inverse problem solution using neural networks," in ISSPIT 2007 - 2007 IEEE International Symposium on Signal Processing and Information Technology, 2007, pp. 894-899. 10.1109/ISSPIT.2007.4458154
  53. K. Y. Aristovich, B. C. Packham, H. Koo, G. S. dos Santos, A. McEvoy, and D. S. Holder, "Imaging fast electrical activity in the brain with electrical impedance tomography," Neuroimage, vol. 124, no. Pt A, pp. 204-213, Jan. 2016. 10.1016/j.neuroimage.2015.08.071
  54. S. Martin and C. T. M. Choi, "Nonlinear Electrical Impedance Tomography Reconstruction Using Artificial Neural Networks and Particle Swarm Optimization," IEEE Trans. Magn., vol. 52, no. 3, Mar. 2016. 10.1109/TMAG.2015.2488901
  55. A. Adler et al. “GREIT: a unified approach to 2D linear EIT reconstruction of lung images,“ Physiol. Meas. 2009 Jun;30(6):S35-55. 10.1088/0967-3334/30/6/S03.
  56. B. Grychtol, W. R. B. Lionheart, M. Bodenstein, G. K. Wolf, and A. Adler, "Impact of model shape mismatch on reconstruction quality in electrical impedance tomography," IEEE Trans. Med. Imaging, vol. 31, no. 9, pp. 1754-1760, 2012. 10.1109/TMI.2012.2200904
  57. Q. Liu, T. I. Oh, H. Wi, E. J. Lee, J. K. Seo, and E. J. Woo, "Design of a microscopic electrical impedance tomography system using two current injections," Physiol. Meas., vol. 32, no. 9, pp. 1505-1516, Sep. 2011. 10.1088/0967-3334/32/9/011
  58. B. Grychtol, B. Müller, and A. Adler, “3D EIT image reconstruction with GREIT,” Physiol. Meas., vol. 37, no. 6, pp. 785–800, 2016. 10.1088/0967-3334/37/6/785.
  59. S. J. Hamilton, W. R. B. Lionheart, and A. Adler, "Comparing D-bar and common regularization-based methods for electrical impedance tomography," Physiol. Meas., vol. 40, no. 4, p. 44004, Apr. 2019. 10.1088/1361-6579/ab14aa
  60. Y. Fan and L. Ying, "Solving electrical impedance tomography with deep learning," J. Comput. Phys., vol. 404, p. 109119, Mar. 2020. 10.1016/j.jcp.2019.109119
  61. S. J. Hamilton and A. Hauptmann, "Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks," IEEE Trans. Med. Imaging, vol. 37, no. 10, pp. 2367-2377, Oct. 2018. 10.1109/TMI.2018.2828303
  62. B. McDermott, M. O'Halloran, E. Porter, and A. Santorelli, "Brain haemorrhage detection using a SVM classifier with electrical impedance tomography measurement frames," PLoS One, vol. 13, no. 7, p. e0200469, Jul. 2018. 10.1371/journal.pone.0200469
  63. S. Hannan, M. Faulkner, K. Aristovich, J. Avery, M. Walker, and D. Holder, "Imaging fast electrical activity in the brain during ictal epileptiform discharges with electrical impedance tomography," NeuroImage Clin., vol. 20, pp. 674-684, Jan. 2018. 10.1016/j.nicl.2018.09.004
  64. T. K. Bera, "Applications of Electrical Impedance Tomography (EIT): A Short Review," IOP Conf. Ser. Mater. Sci. Eng., vol. 331, no. 1, 2018. 10.1088/1757-899X/331/1/012004
  65. X. Shi et al., "High-precision electrical impedance tomography data acquisition system for brain imaging," IEEE Sens. J., vol. 18, no. 14, pp. 5974-5984, Jul. 2018. 10.1109/JSEN.2018.2836336
  66. L. Cao et al., "Real-time imaging of infarction deterioration after ischemic stroke in rats using electrical impedance tomography," Physiol. Meas., vol. 41, no. 1, p. 015004, Feb. 2020. 10.1088/1361-6579/ab69ba
  67. M. Faulkner, S. Hannan, K. Aristovich, J. Avery, and D. Holder, "Feasibility of imaging evoked activity throughout the rat brain using electrical impedance tomography," Neuroimage, vol. 178, pp. 1-10, Sep. 2018. 10.1016/j.neuroimage.2018.05.022
  68. T. A. Khan and S. H. Ling, "Review on electrical impedance tomography: Artificial intelligence methods and its applications," Algorithms, vol. 12, no. 5. MDPI AG, p. 88, May 01, 2019. 10.3390/a12050088
  69. A. Witkowska-Wrobel, K. Aristovich, M. Faulkner, J. Avery, and D. Holder, "Feasibility of imaging epileptic seizure onset with EIT and depth electrodes," Neuroimage, vol. 173, pp. 311-321, Jun. 2018. 10.1016/j.neuroimage.2018.02.056
  70. S. Hannan, M. Faulkner, K. Aristovich, J. Avery, M. C. Walker, and D. S. Holder, "In vivo imaging of deep neural activity from the cortical surface during hippocampal epileptiform events in the rat brain using electrical impedance tomography," Neuroimage, vol. 209, p. 116525, Apr. 2020. 10.1016/j.neuroimage.2020.116525
  71. Z. Zhao et al., "Spontaneous breathing trials after prolonged mechanical ventilation monitored by electrical impedance tomography: an observational study," Acta Anaesthesiol. Scand., vol. 61, no. 9, pp. 1166-1175, 2017. 10.1111/aas.12959
  72. L. Cao et al., "Real-time imaging of infarction deterioration after ischemic stroke in rats using electrical impedance tomography," Physiol. Meas., vol. 41, no. 1, p. 015004, Feb. 2020. 10.1088/1361-6579/ab69ba
  73. B. McDermott, M. O'Halloran, E. Porter, and A. Santorelli, "Brain haemorrhage detection using a SVM classifier with electrical impedance tomography measurement frames," PLoS One, vol. 13, no. 7, p. e0200469, Jul. 2018. 10.1371/journal.pone.0200469
  74. M. M. Mellenthin et al., "The ACE1 Electrical Impedance Tomography System for Thoracic Imaging," IEEE Trans. Instrum. Meas., vol. 68, no. 9, 2018. 10.1109/TIM.2018.2874127
  75. Z. Zhao, F. Fu, and I. Frerichs, "Thoracic electrical impedance tomography in Chinese hospitals: A review of clinical research and daily applications," Physiol. Meas., vol. 41, no. 4, Apr. 2020. 10.1088/1361-6579/ab81df
  76. Z. Zhao et al., "Detection of pulmonary oedema by electrical impedance tomography: Validation of previously proposed approaches in a clinical setting," Physiol. Meas., vol. 40, no. 5, Jun. 2019. 10.1088/1361-6579/ab1d90
  77. S. J. H. Heines, U. Strauch, M. C. G. van de Poll, P. M. H. J. Roekaerts, and D. C. J. J. Bergmans, "Clinical implementation of electric impedance tomography in the treatment of ARDS: a single centre experience," J. Clin. Monit. Comput., vol. 33, no. 2, pp. 291-300, Apr. 2019. 10.1007/s10877-018-0164-x
  78. G. Franchineau et al., "Bedside contribution of electrical impedance tomography to setting positive end-expiratory pressure for extracorporeal membrane oxygenation-treated patients with severe acute respiratory distress syndrome," Am. J. Respir. Crit. Care Med., vol. 196, no. 4, pp. 447-457, Aug. 2017. 10.1164/rccm.201605-1055OC
  79. C. H. Gow, M. Y. Chang, Z. Zhao, and K. Möller, "Patient-ventilator asynchrony identified with electrical impedance tomography," in IFAC-PapersOnLine, Jan. 2018, vol. 51, no. 27, pp. 52-55. 10.1016/j.ifacol.2018.11.607
  80. S. Cammarata, "Techniques d’imagerie fonctionnelle du systeme respiratoire par tomographie d’impedance électrique,” École Polytechnique de Montréal, 2013
  81. "Dräger PulmoVista® 500." https://www.draeger.com/en_uk/Products/PulmoVista-500(accessed Aug. 01, 2021).
  82. C. Putensen, B. Hentze, S. Muenster, and T. Muders, "Electrical Impedance Tomography for Cardio-Pulmonary Monitoring," J. Clin. Med., vol. 8, no. 8, p. 1176, 2019. 10.3390/jcm8081176
  83. M. Graf and T. Riedel, "Electrical impedance tomography: Amplitudes of cardiac related impedance changes in the lung are highly position dependent," PLoS One, vol. 12, no. 11, Nov. 2017. 10.1371/journal.pone.0188313
  84. F. Braun, M. Proença, A. Adler, T. Riedel, J. P. Thiran, and J. Solà, "Accuracy and reliability of noninvasive stroke volume monitoring via ECG-gated 3D electrical impedance tomography in healthy volunteers," PLoS One, vol. 13, no. 1, p. e0191870, Jan. 2018. 10.1371/journal.pone.0191870
  85. R. Pikkemaat, S. Lundin, O. Stenqvist, R. D. Hilgers, and S. Leonhardt, "Recent advances in and limitations of cardiac output monitoring by means of electrical impedance tomography," Anesth. Analg., vol. 119, no. 1, pp. 76-83, 2014. 10.1213/ANE.0000000000000241
  86. S. Mansouri, "Determination of Cardiac Output by Peripheral Electrical Bioimpedance," IEEJ Trans. Electr. Electron. Eng., vol. 15, no. 9, pp. 1321-1326, Sep. 2020. 10.1002/tee.23199
  87. "Pulmotrace - Crunchbase Company Profile & Funding." https://www.crunchbase.com/organization/pulmotrace(accessed Aug. 01, 2021).
  88. "CardioInspect Diagnostic and Monitoring Systems - ppt video online download." https://slideplayer.com/slide/9270570/ (accessed Aug. 01, 2021).
  89. F. Braun et al., "Limitations and challenges of EIT-based monitoring of stroke volume and pulmonary artery pressure," Physiol. Meas., vol. 39, no. 1, p. 014003, Jan. 2018. 10.1088/1361-6579/aa9828
  90. J. Grondin, D. Wang, C. S. Grubb, N. Trayanova, and E. E. Konofagou, "4D cardiac electromechanical activation imaging," Comput. Biol. Med., vol. 113, Oct. 2019. 10.1016/j.compbiomed.2019.103382
  91. R. J. Halter et al., "Real-time electrical impedance variations in women with and without breast cancer," IEEE Trans. Med. Imaging, vol. 34, no. 1, pp. 38-48, Jan. 2015. 10.1109/TMI.2014.2342719
  92. D. Haemmerich, S. T. Staelin, J. Z. Tsai, S. Tungjitkusolmun, D. M. Mahvi, and J. G. Webster, "In vivo electrical conductivity of hepatic tumours," in Physiological Measurement, May 2003, vol. 24, no. 2, pp. 251-260. 10.1088/0967-3334/24/2/302
  93. S. Mansouri, T. Alhadidi, and M. Ben Azouz, "Breast cancer detection using low-frequency bioimpedance device," Breast Cancer Targets Ther., vol. 12, pp. 109-116, 2020. 10.2147/BCTT.S274421
  94. S. Hong et al., "A 4.9 mΩ-sensitivity mobile electrical impedance tomography IC for early breast-cancer detection system," IEEE J. Solid-State Circuits, vol. 50, no. 1, pp. 245257, Jan. 2015. 10.1109/JSSC.2014.2355835
  95. P. Åberg, "Skin cancer as seen by electrical impedance," 2004. Department of Laboratory Medicine, Karolinska institutet, 2004.
  96. A. V. Giblin and J. M. Thomas, "Incidence, mortality and survival in cutaneous melanoma," Journal of Plastic, Reconstructive and Aesthetic Surgery, vol. 60, no. 1, pp. 3240, Jan. 01, 2007. 10.1016/j.bjps.2006.05.008
  97. A.E. Hartinger, R. Guardo, V. Kokta and H. Gagnon, “Microinvasive Electrical Impedance Tomography for Skin Cancer Screening”Conf. IEEE Canada , Toronto, Ontario, Canada, 2011.
  98. D. Haemmerich, S. T. Staelin, J. Z. Tsai, S. Tungjitkusolmun, D. M. Mahvi, and J. G. Webster, "In vivo electrical conductivity of hepatic tumours," Physiol. Meas., vol. 24, no. 2, pp. 251260, 2003. 10.1088/0967-3334/24/2/302
  99. A. P. Moumbe, “Développement de l’unité centrale d’un système d’acquisition simultanée d’électroencéphalogrammes et de données de tomographie d’impédance électrique,” École Polytechnique de Montréal, 2011.
  100. T. A. Hope and S. E. Iles, "Technology review: The use of electrical impedance scanning in the detection of breast cancer," Breast Cancer Research, vol. 6, no. 2. Breast Cancer Res, pp. 69-74, Mar. 2004. 10.1186/bcr744
  101. C. T. Soulsby, M. Khela, E. Yazaki, D. F. Evans, E. Hennessy, and J. Powell-Tuck, "Measurements of gastric emptying during continuous nasogastric infusion of liquid feed: Electric impedance tomography versus gamma scintigraphy," Clin. Nutr., vol. 25, no. 4, pp. 671-680, Aug. 2006. 10.1016/j.clnu.2005.11.015
  102. T. Sun, S. Tsuda, K. P. Zauner, and H. Morgan, "On-chip electrical impedance tomography for imaging biological cells," Biosens. Bioelectron., vol. 25, no. 5, pp. 1109-1115, Jan. 2010. 10.1016/j.bios.2009.09.036
  103. Z. Ren and W. Q. Yang, "Development of a Navigation Tool for Revision Total Hip Surgery Based on Electrical Impedance Tomography," IEEE Trans. Instrum. Meas., vol. 65, no. 12, pp. 2748-2757. 10.1109/TIM.2016.2608098
  104. Z. Ren and W. Q. Yang, "Visualisation of tooth surface by electrical capacitance tomography," Biomed. Phys. Eng. Express, vol. 3, no. 1, p. 015021, Feb. 2017. 10.1088/2057-1976/3/1/015021
  105. A. K. Khambampati, S. K. Konki, Y. J. Han, S. K. Sharma, and K. Y. Kim, “An Efficient Method to Determine the Size of Bladder Using Electrical Impedance Tomography.,” in TENCON, 2018, pp. 1933–1936. 10.1109/TENCON.2018.8650499
  106. E. Dunne, A. Santorelli, B. McGinley, G. Leader, M. O'halloran, and E. Porter, "Supervised learning classifiers for electrical impedance-based bladder state detection," Sci. Rep., vol. 8, no. 1, Dec. 2018. 10.1038/s41598-018-23786-5
Language: English
Page range: 50 - 62
Submitted on: Mar 8, 2021
Published on: Oct 6, 2021
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Sofiene Mansouri, Yousef Alharbi, Fatma Haddad, Souhir Chabcoub, Anwar Alshrouf, Amr A. Abd-Elghany, published by University of Oslo
This work is licensed under the Creative Commons Attribution 4.0 License.