References
- Alekseevskii, V. P. (1966). Penetration of a rod into a target at high velocity. Combustion, Explosion, and Shock Waves, 2(2), pp. 63-66.
- Anderson, J. D. (2016). Introduction to Flight, 8th edn. McGraw-Hill, New York.
- Bavdekar, S., Parsard, G., Subhash, G., & Satapathy, S. (2017). An improved dynamic expanding cavity model for high-pressure and high-strain rate response of ceramics. International Journal of Solids and Structures, 125(77), p. 88. doi: 10.1016/j.ijsolstr.2017.07.014.
- Bavdekar, S., Subhash, G., & Satapathy, S. (2019). A unified model for dwell and penetration during long rod impact on thick ceramic targets. International Journal of Impact Engineering, 131(May), pp. 304-316. doi: 10.1016/j.ijimpeng.2019.05.014.
- Bear, G. (2005). Quantico. HarperCollins Publishers, London.
- Bond, J. W. (1958). Plasma physics and hypersonic flight. Journal of Jet Propulsion, 28, pp. 228-235. doi: 10.2514/8.7284.
- Braun, W. F. (1973). Aerodynamic data for small arms projectiles. US Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland.
- Butler, D. K. Nielsen, R. R., Dropek, R. K., & Butters, S. W. (1977). Constitutive Property Investigations in Support of Full-Scale Penetration Tests in Dakota Sandstone, San Ysidro, New Mexico, Technical Report S-77-3, Washington, DC.
- Chapman, S., & Cowling, T. G. (1970). The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press, Cambridge.
- Copp, K. (2003a). Iraqi freedom – guided munitions. Australian Aviation, (June), pp. 1-6.
- Copp, K. (2003b). The Hammer & Anvil. Australian Aviation, (May), pp. 25-35.
- Curtis, H. (2005). Orbital Mechanics for Engineering Students. Elsevier, Amsterdam.
- Elbasheer, R. M. (2014). K-BOMB: Analysis of G/LEO Kinetic Bombardment and Application to National Security Strategies for Full-Spectrum Military Interoperability, A002-R02-2014, Project Polemos.
- Flis, W. J. (2016). Modified Alekseevskii–Tate model for rod penetration of porous targets. Proceedings - 29th International Symposium on Ballistics, 2(2), pp. 2219-2227.
- Frew, D. J., Hanchak, S. J., Green, M.L., & Forrestal, M.J. (1998). Penetration of concrete targets with ogive-nose steel rods. International Journal of Impact Engineering, 21(6), pp. 489-497. doi: 10.1016/S0734-743X(98)00008-6.
- Güldemeister, N., & Wünnemann, K. (2017). Quantitative analysis of impact-induced seismic signals by numerical modeling. Icarus, 296, pp. 15-27. doi: 10.1016/j.icarus.2017.05.010.
- Gutenberg, B., & Richter, C. F. (1955). Magnitute and energy of earthquakes. Nature, 176(4486), p. 795.
- Hankey, W. L. (1988). Re-Entry Aerodynamics. AIAA, Washington, DC.
- Hibbeler, R. C. (2020). Fluid Mechanics. Pearson, London.
- Hohler, V., & Stilp, A. J. (1990). Long-rod penetration mechanics. In: Zukas, J. A. (ed.), High Velocity Impact Dynamics. John Wiley & Sons, New York, pp. 321-404.
- Holmquist, T. J., Johnson, G. R., & Cook, W. H. (1993). Computational constitutive model for concrete subjected to large strains, high strain rates, and high pressure. In: 14th International Symposium on Ballistics, pp. 591-600.
- Johnson-Freese, J. (2017). Space Warfare in the 21st Century: Arming the Heavens. Routledge, London and New York.
- Karmes, D. (2014). The Patricia Lynn Project: Vietnam War, the Early Years of Air Intelligence. iUniverse, Bloomington, IN.
- Larson, C. (2020). ‘Rods from God’: Why Mach 5 Hypersonic Tugeston Bombs Were Never Dropped, 16 November, National Interest. Available at: https://nationalinterest.org/blog/buzz/rods-god-why-mach-5-hypersonic-tugeston-bombs-were-never-dropped-172663 [accessed 22 November 2022].
- Noble, C., Kokko, E., Darnell, I., Dunn, T., Hagler, L., & Leininger, L. (2005). Concrete Model Descriptions and Summary of Benchmark Studies for Blast Effects Simulations. University of California, Lawrence Livermore National Laboratory.
- Pournelle, J. P. (1974). A step farther out: Halfway to anywhere. Galaxy, 34(7), pp. 94-101.
- SpaceX (2012). Capabilities and services, [Online]. Available at: https://web.archive.org/web/20131005123104/http://www. spacex.com/about/capabilities.
- Stilwell, B. (2020). These Air Force ‘rods from God’ could hit with the force of a nuclear weapon, 10 September, We are the mighty. Available at: https://www.wearethemighty.com/articles/these-air-force-rods-from-god-could-hit-with-the-force-of-a-nuclear-weapon/ [accessed 22 November, 2022].
- Stokes, E., Yarrington, P., & Glenn, L. (2005) An Earth Penetrating Modeling Assessment, UCRL-TR-213206. doi: 10.2172/919237.
- Tate, A. (1969). Further results in the theory of long rod penetration. Journal of the Mechanics and Physics of Solids, 17(3), pp. 141-150. doi: 10.1016/0022-5096(69)90028-3.
- Tate, A. (1979). A simple estimate of the minimum target obliquity required for the ricochet of a high speed long rod projectile. Journal of Physics D: Applied Physics, 12(11), pp. 1825-1829. doi: 10.1088/0022-3727/12/11/011.
- Tate, A. (1986). Long rod penetration models – Part II. Extensions to the hydrodynamic theory of penetration. International Journal of Mechanical Sciences, 28(9), pp. 599-612. doi: 10.1016/0020-7403(86)90075-5.
- UN Outer Space Treaty of 1966. Article IV (1966). https://www.unoosa.org/oosa/en/ourwork/spacelaw/treaties/outerspa-cetreaty.html
- USGS (2010). Earthquake Facts and Statistics, US Geological Survey. Available at: https://www.unoosa.org/oosa/en/ourwork/spacelaw/treaties/outerspacetreaty.html.
- USGS (2022). At what magnitude does damage begin to occur in an earthquake? US Geological Survey. Available at: https:// www.usgs.gov/faqs/what-magnitude-does-damage-begin-occur-earthquake.
- Vahedi, K., Latifi, M., & Khosravi, F. (2008). Investigation and analysis of ogive-shape nose steel projectile into concrete target. Turkish Journal of Engineering and Environmental Sciences, 32(5), pp. 295-302.
- Walker, J. D. (2021). Modern Impact and Penetration Mechanics, 1st edn. Cambridge University Press, Cambridge, UK. doi: 10.1017/9781108684026.
- Warren, T. L., Hanchak, S. J., & Poormon, K. L. (2004). Penetration of limestone targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: Experiments and simulations. International Journal of Impact Engineering, 30(10), pp. 1307-1331. doi: 10.1016/j.ijimpeng.2003.09.047.
- Watts, B. D. (2005). Long-Range Strike: Imperatives, Urgency and Options. Center for Strategic and Budgetary Assessments, Washington, DC.
- Wiesel, W. E. (2010). Spaceflight Dynamics, 3rd edn. Aphelion Press, Beavercreek, OH.
- Zheng, L., Yuanxue, L., Ming, H., & Wu, R. (2016). Evaluation of damage effect of God stick space-based kinetic energy weapon (in Chinese). Journal of vibration and shock, 35(18), pp. 159-165.