Have a personal or library account? Click to login
Feasibility of kinetic orbital bombardment Cover
Open Access
|Feb 2024

References

  1. Alekseevskii, V. P. (1966). Penetration of a rod into a target at high velocity. Combustion, Explosion, and Shock Waves, 2(2), pp. 63-66.
  2. Anderson, J. D. (2016). Introduction to Flight, 8th edn. McGraw-Hill, New York.
  3. Bavdekar, S., Parsard, G., Subhash, G., & Satapathy, S. (2017). An improved dynamic expanding cavity model for high-pressure and high-strain rate response of ceramics. International Journal of Solids and Structures, 125(77), p. 88. doi: 10.1016/j.ijsolstr.2017.07.014.
  4. Bavdekar, S., Subhash, G., & Satapathy, S. (2019). A unified model for dwell and penetration during long rod impact on thick ceramic targets. International Journal of Impact Engineering, 131(May), pp. 304-316. doi: 10.1016/j.ijimpeng.2019.05.014.
  5. Bear, G. (2005). Quantico. HarperCollins Publishers, London.
  6. Bond, J. W. (1958). Plasma physics and hypersonic flight. Journal of Jet Propulsion, 28, pp. 228-235. doi: 10.2514/8.7284.
  7. Braun, W. F. (1973). Aerodynamic data for small arms projectiles. US Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland.
  8. Butler, D. K. Nielsen, R. R., Dropek, R. K., & Butters, S. W. (1977). Constitutive Property Investigations in Support of Full-Scale Penetration Tests in Dakota Sandstone, San Ysidro, New Mexico, Technical Report S-77-3, Washington, DC.
  9. Chapman, S., & Cowling, T. G. (1970). The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press, Cambridge.
  10. Copp, K. (2003a). Iraqi freedom – guided munitions. Australian Aviation, (June), pp. 1-6.
  11. Copp, K. (2003b). The Hammer & Anvil. Australian Aviation, (May), pp. 25-35.
  12. Curtis, H. (2005). Orbital Mechanics for Engineering Students. Elsevier, Amsterdam.
  13. Elbasheer, R. M. (2014). K-BOMB: Analysis of G/LEO Kinetic Bombardment and Application to National Security Strategies for Full-Spectrum Military Interoperability, A002-R02-2014, Project Polemos.
  14. Flis, W. J. (2016). Modified Alekseevskii–Tate model for rod penetration of porous targets. Proceedings - 29th International Symposium on Ballistics, 2(2), pp. 2219-2227.
  15. Frew, D. J., Hanchak, S. J., Green, M.L., & Forrestal, M.J. (1998). Penetration of concrete targets with ogive-nose steel rods. International Journal of Impact Engineering, 21(6), pp. 489-497. doi: 10.1016/S0734-743X(98)00008-6.
  16. Güldemeister, N., & Wünnemann, K. (2017). Quantitative analysis of impact-induced seismic signals by numerical modeling. Icarus, 296, pp. 15-27. doi: 10.1016/j.icarus.2017.05.010.
  17. Gutenberg, B., & Richter, C. F. (1955). Magnitute and energy of earthquakes. Nature, 176(4486), p. 795.
  18. Hankey, W. L. (1988). Re-Entry Aerodynamics. AIAA, Washington, DC.
  19. Hibbeler, R. C. (2020). Fluid Mechanics. Pearson, London.
  20. Hohler, V., & Stilp, A. J. (1990). Long-rod penetration mechanics. In: Zukas, J. A. (ed.), High Velocity Impact Dynamics. John Wiley & Sons, New York, pp. 321-404.
  21. Holmquist, T. J., Johnson, G. R., & Cook, W. H. (1993). Computational constitutive model for concrete subjected to large strains, high strain rates, and high pressure. In: 14th International Symposium on Ballistics, pp. 591-600.
  22. Johnson-Freese, J. (2017). Space Warfare in the 21st Century: Arming the Heavens. Routledge, London and New York.
  23. Karmes, D. (2014). The Patricia Lynn Project: Vietnam War, the Early Years of Air Intelligence. iUniverse, Bloomington, IN.
  24. Larson, C. (2020). ‘Rods from God’: Why Mach 5 Hypersonic Tugeston Bombs Were Never Dropped, 16 November, National Interest. Available at: https://nationalinterest.org/blog/buzz/rods-god-why-mach-5-hypersonic-tugeston-bombs-were-never-dropped-172663 [accessed 22 November 2022].
  25. Noble, C., Kokko, E., Darnell, I., Dunn, T., Hagler, L., & Leininger, L. (2005). Concrete Model Descriptions and Summary of Benchmark Studies for Blast Effects Simulations. University of California, Lawrence Livermore National Laboratory.
  26. Pournelle, J. P. (1974). A step farther out: Halfway to anywhere. Galaxy, 34(7), pp. 94-101.
  27. SpaceX (2012). Capabilities and services, [Online]. Available at: https://web.archive.org/web/20131005123104/http://www. spacex.com/about/capabilities.
  28. Stilwell, B. (2020). These Air Force ‘rods from God’ could hit with the force of a nuclear weapon, 10 September, We are the mighty. Available at: https://www.wearethemighty.com/articles/these-air-force-rods-from-god-could-hit-with-the-force-of-a-nuclear-weapon/ [accessed 22 November, 2022].
  29. Stokes, E., Yarrington, P., & Glenn, L. (2005) An Earth Penetrating Modeling Assessment, UCRL-TR-213206. doi: 10.2172/919237.
  30. Tate, A. (1969). Further results in the theory of long rod penetration. Journal of the Mechanics and Physics of Solids, 17(3), pp. 141-150. doi: 10.1016/0022-5096(69)90028-3.
  31. Tate, A. (1979). A simple estimate of the minimum target obliquity required for the ricochet of a high speed long rod projectile. Journal of Physics D: Applied Physics, 12(11), pp. 1825-1829. doi: 10.1088/0022-3727/12/11/011.
  32. Tate, A. (1986). Long rod penetration models – Part II. Extensions to the hydrodynamic theory of penetration. International Journal of Mechanical Sciences, 28(9), pp. 599-612. doi: 10.1016/0020-7403(86)90075-5.
  33. UN Outer Space Treaty of 1966. Article IV (1966). https://www.unoosa.org/oosa/en/ourwork/spacelaw/treaties/outerspa-cetreaty.html
  34. USGS (2010). Earthquake Facts and Statistics, US Geological Survey. Available at: https://www.unoosa.org/oosa/en/ourwork/spacelaw/treaties/outerspacetreaty.html.
  35. USGS (2022). At what magnitude does damage begin to occur in an earthquake? US Geological Survey. Available at: https:// www.usgs.gov/faqs/what-magnitude-does-damage-begin-occur-earthquake.
  36. Vahedi, K., Latifi, M., & Khosravi, F. (2008). Investigation and analysis of ogive-shape nose steel projectile into concrete target. Turkish Journal of Engineering and Environmental Sciences, 32(5), pp. 295-302.
  37. Walker, J. D. (2021). Modern Impact and Penetration Mechanics, 1st edn. Cambridge University Press, Cambridge, UK. doi: 10.1017/9781108684026.
  38. Warren, T. L., Hanchak, S. J., & Poormon, K. L. (2004). Penetration of limestone targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: Experiments and simulations. International Journal of Impact Engineering, 30(10), pp. 1307-1331. doi: 10.1016/j.ijimpeng.2003.09.047.
  39. Watts, B. D. (2005). Long-Range Strike: Imperatives, Urgency and Options. Center for Strategic and Budgetary Assessments, Washington, DC.
  40. Wiesel, W. E. (2010). Spaceflight Dynamics, 3rd edn. Aphelion Press, Beavercreek, OH.
  41. Zheng, L., Yuanxue, L., Ming, H., & Wu, R. (2016). Evaluation of damage effect of God stick space-based kinetic energy weapon (in Chinese). Journal of vibration and shock, 35(18), pp. 159-165.
DOI: https://doi.org/10.2478/jms-2024-0001 | Journal eISSN: 1799-3350 | Journal ISSN: 2242-3524
Language: English
Page range: 1 - 15
Submitted on: Jan 31, 2023
|
Accepted on: Sep 13, 2023
|
Published on: Feb 5, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 L. Koene, N.V.H. Schouten, R. Savelsberg, published by National Defense University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.