Have a personal or library account? Click to login
Multi-sensor fusion for robust indoor localization of industrial UAVs using particle filter Cover

Multi-sensor fusion for robust indoor localization of industrial UAVs using particle filter

Open Access
|Aug 2024

References

  1. N. El-Sheimy and Y. Li, "Indoor navigation: state of the art and future trends," <em>Satellite Navigation,</em> vol. 2, no. 1, 5 2021.
  2. C. Malang, P. Charoenkwan and R. Wudhikarn, "Implemen-tation and Critical Factors of Unmanned Aerial Vehicle (UAV) in Warehouse Management: A Systematic Literature Review," <em>Drones,</em> vol. 7, no. 2, 2023.
  3. F. J. Perez-Grau, F. Caballero, A. Viguria and A. Ollero, "Multi-sensor three-dimensional Monte Carlo localization for long-term aerial robot navigation," <em>International Journal of Advanced Robotic Systems,</em> vol. 14, 2017.
  4. M. Labbé and F. Michaud, "RTAB-Map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation," <em>Journal of Field Robotics,</em> vol. 36, pp. 416-446, 2019.
  5. Vicon Motion Systems Ltd UK, "Award Winning Motion Capture Systems | Vicon," [Online]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.vicon.com/">https://www.vicon.com/</ext-link>. [Accessed 15 07 2024].
  6. R. Mur-Artal and J. D. Tardos, "ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras," <em>IEEE Transactions on Robotics,</em> vol. 33, p. 1255–1262, October 2017.
  7. I. Cvišić, J. Ćesić, I. Marković and I. Petrović, "SOFT-SLAM: Computationally efficient stereo visual simultaneous localization and mapping for autonomous unmanned aerial vehicles," <em>Journal of Field Robotics,</em> vol. 35, pp. 578-595, 2018.
  8. Intel Corporation, <em>Intel® RealSense™ Tracking Camera T265.</em>
  9. S. Thrun, D. Fox, W. Burgard and F. Dellaert, "Robust Monte Carlo localization for mobile robots," <em>Artificial Intelligence,</em> vol. 128, pp. 99-141, 2001.
  10. N. Yang, W. F. Tian, Z. H. Jin and C. B. Zhang, "Particle filter for sensor fusion in a land vehicle navigation system," <em>Measurement Science and Technology,</em> vol. 16, p. 677–681, February 2005.
  11. R. R. Labbe, <em>Kalman and Bayesian Filters in Python.</em>
  12. D. Fox, W. Burgard, F. Dellaert and S. Thrun, "Monte carlo localization: Efficient position estimation for mobile robots," <em>AAAI/IAAI,</em> vol. 1999, p. 2–2, 1999.
  13. C. Snyder, T. Bengtsson, P. Bickel and J. Anderson, "Obstacles to High-Dimensional Particle Filtering," <em>Monthly Weather Review,</em> vol. 136, pp. 4629-4640, 2008.
  14. B. Yan, J. Xin, M. Shan and Y. Wang, "CUDA Implementation of A Parallel Particle Filter for Mobile Robot Pose Estimation," in <em>2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)</em>, 2019.
  15. M. Bertoni, S. Michieletto, R. Oboe and G. Michieletto, "Indoor Visual-Based Localization System for Multi-Rotor UAVs," <em>Sensors,</em> vol. 22, no. 15, 8 2022.
  16. L. Markovic, M. Kovac, R. Milijas, M. Car and S. Bogdan, "Error State Extended Kalman Filter Multi-Sensor Fusion for Unmanned Aerial Vehicle Localization in GPS and Magnetometer Denied Indoor Environments," in <em>2022 International Conference on Unmanned Aircraft Systems, ICUAS 2022</em>, 2022.
  17. S. Sina, B. Jeremy, J.-S. Farrokh and M. Iraj, "A Robust and Adaptive Sensor Fusion Approach for Indoor UAV Localization," in <em>2023 International Conference on Unmanned Aircraft Systems, ICUAS 2023</em>, 2023.
  18. D. Hao, W. Wei, C. Xu, R. Xiao and C. Sun, "Real-time onboard 3D state estimation of an unmanned aerial vehicle in multi-environments using multi-sensor data fusion," <em>Sensors (Switzerland),</em> vol. 20, no. 3, 2 2020.
  19. NVIDIA Corporation, <em>Jetson Xavier NX.</em>
  20. Ardupilot, <em>The Cube Overview.</em>
  21. IntelRealSense, <em>ROS Wrapper for Intel® RealSense™ Devices.</em>
  22. F. J. Romero-Ramirez, R. Muñoz-Salinas and R. Medina-Carnicer, "Speeded up detection of squared fiducial markers," <em>Image and Vision Computing,</em> vol. 76, pp. 38-47, 2018.
  23. S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas and R. Medina-Carnicer, "Generation of fiducial marker dictio-naries using Mixed Integer Linear Programming," <em>Pattern Recognition,</em> vol. 51, pp. 481-491, 2016.
  24. E. Mráz, J. Rodina and A. Babinec, "Using fiducial markers to improve localization of a drone," in <em>2020 23rd International Symposium on Measurement and Control in Robotics (ISMCR)</em>, 2020.
  25. T. Li, M. Bolic and P. Djuric, "Resampling Methods for Particle Filtering: Classification, implementation, and strategies," <em>Signal Processing Magazine, IEEE,</em> vol. 32, pp. 70-86, May 2015.
  26. A. Babinec, L. Jurišica, P. Hubinský and F. Duchoň, "Visual Localization of Mobile Robot Using Artificial Markers," <em>Procedia Engineering,</em> vol. 96, December 2014.
  27. D. Avola, L. Cinque, G. L. Foresti, C. Mercuri and D. Pannone, "A practical framework for the development of augmented reality applications by using ArUco markers," in <em>International Conference on Pattern Recognition Applications and Methods</em>, 2016.
DOI: https://doi.org/10.2478/jee-2024-0037 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 304 - 316
Submitted on: Apr 25, 2024
Published on: Aug 9, 2024
Published by: Slovak University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2024 Eduard Mráz, Adam Trizuljak, Matej Rajchl, Martin Sedláček, Filip Štec, Jaromír Stanko, Jozef Rodina, published by Slovak University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.