Have a personal or library account? Click to login
Multimodal sentiment analysis for social media contents during public emergencies Cover

Multimodal sentiment analysis for social media contents during public emergencies

Open Access
|Aug 2023

Abstract

Purpose

Nowadays, public opinions during public emergencies involve not only textual contents but also contain images. However, the existing works mainly focus on textual contents and they do not provide a satisfactory accuracy of sentiment analysis, lacking the combination of multimodal contents. In this paper, we propose to combine texts and images generated in the social media to perform sentiment analysis.

Design/methodology/approach

We propose a Deep Multimodal Fusion Model (DMFM), which combines textual and visual sentiment analysis. We first train word2vec model on a large-scale public emergency corpus to obtain semantic-rich word vectors as the input of textual sentiment analysis. BiLSTM is employed to generate encoded textual embeddings. To fully excavate visual information from images, a modified pretrained VGG16-based sentiment analysis network is used with the best-performed fine-tuning strategy. A multimodal fusion method is implemented to fuse textual and visual embeddings completely, producing predicted labels.

Findings

We performed extensive experiments on Weibo and Twitter public emergency datasets, to evaluate the performance of our proposed model. Experimental results demonstrate that the DMFM provides higher accuracy compared with baseline models. The introduction of images can boost the performance of sentiment analysis during public emergencies.

Research limitations

In the future, we will test our model in a wider dataset. We will also consider a better way to learn the multimodal fusion information.

Practical implications

We build an efficient multimodal sentiment analysis model for the social media contents during public emergencies.

Originality/value

We consider the images posted by online users during public emergencies on social platforms. The proposed method can present a novel scope for sentiment analysis during public emergencies and provide the decision support for the government when formulating policies in public emergencies.

DOI: https://doi.org/10.2478/jdis-2023-0012 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Page range: 61 - 87
Submitted on: Nov 7, 2022
Accepted on: May 5, 2023
Published on: Aug 25, 2023
Published by: Chinese Academy of Sciences, National Science Library
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Tao Fan, Hao Wang, Peng Wu, Chen Ling, Milad Taleby Ahvanooey, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution 4.0 License.