Have a personal or library account? Click to login
Multimodal sentiment analysis for social media contents during public emergencies Cover

Multimodal sentiment analysis for social media contents during public emergencies

Open Access
|Aug 2023

References

  1. Abdi, A., Shamsuddin, S. M., Hasan, S., & Piran, J. (2019). Deep learning-based sentiment classification of evaluative text based on Multi-feature fusion. Information Processing & Management, 56(4), 1245–1259. https://doi.org/10.1016/j.ipm.2019.02.018
  2. Brousmiche, M., Rouat, J., & Dupont, S. (2022). Multimodal Attentive Fusion Network for audio-visual event recognition. Information Fusion, 85, 52–59. https://doi.org/10.1016/j. inffus.2022.03.001
  3. Cai, G. Y., & Xia, B. B. (2015). Convolutional Neural Networks for Multimedia Sentiment Analysis. In Li J.Z., Ji H., Zhao D.Y., & Feng Y.S. (Eds.), Natural Language Processing and Chinese Computing (pp. 159–167). Springer International Publishing. https://doi.org/10.1007/978-3-319-25207-0_14
  4. Cambria, E. (2016). Affective Computing and Sentiment Analysis. IEEE Intelligent Systems, 31(2), 102–107. https://doi.org/10.1109/MIS.2016.31
  5. Cambria, E., Howard, N., Hsu, J., & Hussain, A. (2013). Sentic blending: Scalable multimodal fusion for the continuous interpretation of semantics and sentics. 2013 IEEE Symposium on Computational Intelligence for Human-like Intelligence (CIHLI), 108–117. https://doi.org/10.1109/CIHLI.2013.6613272
  6. Campos, V., Jou, B., & Giró-i-Nieto, X. (2017). From pixels to sentiment: Fine-tuning CNNs for visual sentiment prediction. Image and Vision Computing, 65, 15–22. https://doi.org/10.1016/j. imavis.2017.01.011
  7. Chen, C., Hong, H. S., Guo, J., & Song, B. (2023). Inter-Intra Modal Representation Augmentation with Trimodal Collaborative Disentanglement Network for Multimodal Sentiment Analysis. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 1–14. https://doi.org/10.1109/TASLP.2023.3263801
  8. Chen, T., Borth, D., Darrell, T., & Chang, S. F. (2014). DeepSentiBank: Visual Sentiment Concept Classification with Deep Convolutional Neural Networks (arXiv:1410.8586). arXiv. https://doi.org/10.48550/arXiv.1410.8586
  9. Chen, T., Xu, R. F., He, Y. L., & Wang, X. (2017). Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN. Expert Systems with Applications, 72, 221–230. https://doi.org/10.1016/j.eswa.2016.10.065
  10. Deng, J., Dong, W., Socher, R., Li, L. J., Kai Li, & Li F. F. (2009). ImageNet: A large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition, 248–255. https://doi.org/10.1109/CVPR.2009.5206848
  11. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 4171–4186. https://doi.org/10.18653/v1/N19-1423
  12. Gaspar, R., Pedro, C., Panagiotopoulos, P., & Seibt, B. (2016). Beyond positive or negative: Qualitative sentiment analysis of social media reactions to unexpected stressful events. Computers in Human Behavior, 56, 179–191. https://doi.org/10.1016/j.chb.2015.11.040
  13. Ghorbanali, A., Sohrabi, M. K., & Yaghmaee, F. (2022). Ensemble transfer learning-based multimodal sentiment analysis using weighted convolutional neural networks. Information Processing & Management, 59(3), 102929. https://doi.org/10.1016/j.ipm.2022.102929
  14. Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
  15. Hu, A., & Flaxman, S. (2018). Multimodal Sentiment Analysis To Explore the Structure of Emotions. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 350–358. https://doi.org/10.1145/3219819.3219853
  16. Kim, H. E., Cosa-Linan, A., Santhanam, N., Jannesari, M., Maros, M. E., & Ganslandt, T. (2022). Transfer learning for medical image classification: A literature review. BMC Medical Imaging, 22(1), 69. https://doi.org/10.1186/s12880-022-00793-7
  17. Liu, G., & Guo, J. B. (2019). Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing, 337, 325–338. https://doi.org/10.1016/j. neucom.2019.01.078
  18. Lu, W., Luo, M. Q., Zhang, Z. Y., Zhang, G. B., Ding, H., Chen, H. H., & Chen, J. P. (2019). Result diversification in image retrieval based on semantic distance. Information Sciences, 502, 59–75. https://doi.org/10.1016/j.ins.2019.06.020
  19. Majumder, N., Hazarika, D., Gelbukh, A., Cambria, E., & Poria, S. (2018). Multimodal sentiment analysis using hierarchical fusion with context modeling. Knowledge-Based Systems, 161, 124–133. https://doi.org/10.1016/j.knosys.2018.07.041
  20. Majumder, N., Poria, S., Peng, H. Y., Chhaya, N., Cambria, E., & Gelbukh, A. (2019). Sentiment and Sarcasm Classification With Multitask Learning. IEEE Intelligent Systems, 34(3), 38–43. https://doi.org/10.1109/MIS.2019.2904691
  21. Martínez-Rojas, M., Pardo-Ferreira, M. del C., & Rubio-Romero, J. C. (2018). Twitter as a tool for the management and analysis of emergency situations: A systematic literature review. International Journal of Information Management, 43, 196–208. https://doi.org/10.1016/j. ijinfomgt.2018.07.008
  22. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. Advances in Neural Information Processing Systems, 26. https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923 ce901b-Abstract.html
  23. Moraes, R., Valiati, J. F., & Gavião Neto, W. P. (2013). Document-level sentiment classification: An empirical comparison between SVM and ANN. Expert Systems with Applications, 40(2), 621–633. https://doi.org/10.1016/j.eswa.2012.07.059
  24. Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global Vectors for Word Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532–1543. https://doi.org/10.3115/v1/D14-1162
  25. Pérez Rosas, V., Mihalcea, R., & Morency, L. P. (2013). Multimodal Sentiment Analysis of Spanish Online Videos. IEEE Intelligent Systems, 28(3), 38–45. https://doi.org/10.1109/MIS.2013.9
  26. Poria, S., Cambria, E., Bajpai, R., & Hussain, A. (2017). A review of affective computing: From unimodal analysis to multimodal fusion. Information Fusion, 37, 98–125. https://doi.org/10.1016/j.inffus.2017.02.003
  27. Poria, S., Cambria, E., Howard, N., Huang, G. B., & Hussain, A. (2016). Fusing audio, visual and textual clues for sentiment analysis from multimodal content. Neurocomputing, 174, 50–59. https://doi.org/10.1016/j.neucom.2015.01.095
  28. Rezaeinia, S. M., Rahmani, R., Ghodsi, A., & Veisi, H. (2019). Sentiment analysis based on improved pre-trained word embeddings. Expert Systems with Applications, 117, 139–147. https://doi.org/10.1016/j.eswa.2018.08.044
  29. Ruwa, N., Mao, Q. R., Song, H. P., Jia, H. J., & Dong, M. (2019). Triple attention network for sentimental visual question answering. Computer Vision and Image Understanding, 189, 102829. https://doi.org/10.1016/j.cviu.2019.102829
  30. Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition. ICLR. https://arxiv.org/abs/1409.1556
  31. Smith, B. G., Smith, S. B., & Knighton, D. (2018). Social media dialogues in a crisis: A mixed-methods approach to identifying publics on social media. Public Relations Review, 44(4), 562–573. https://doi.org/10.1016/j.pubrev.2018.07.005
  32. Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., & Potts, C. (2013). Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank. Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 1631–1642. https://aclanthology.org/D13-1170
  33. Song, K. K., Yao, T., Ling, Q., & Mei, T. (2018). Boosting image sentiment analysis with visual attention. Neurocomputing, 312, 218–228. https://doi.org/10.1016/j.neucom.2018.05.104
  34. Stappen, L., Schumann, L., Sertolli, B., Baird, A., Weigell, B., Cambria, E., & Schuller, B. W. (2021). MuSe-Toolbox: The Multimodal Sentiment Analysis Continuous Annotation Fusion and Discrete Class Transformation Toolbox. Proceedings of the 2nd on Multimodal Sentiment Analysis Challenge, 75–82. https://doi.org/10.1145/3475957.3484451
  35. Stieglitz, S., & Linh, D. X. (2013). Social media and political communication: A social media analytics framework. Social Network Analysis and Mining, 3(4), 1277–1291. https://doi.org/10.1007/s13278-012-0079-3
  36. Wang, J., Peng, B., & Zhang, X. J. (2018). Using a stacked residual LSTM model for sentiment intensity prediction. Neurocomputing, 322, 93–101. https://doi.org/10.1016/j.neucom.2018.09.049
  37. Wu, P., Li, X. T., Shen, S., & He, D. Q. (2020). Social media opinion summarization using emotion cognition and convolutional neural networks. International Journal of Information Management, 51, 101978. https://doi.org/10.1016/j.ijinfomgt.2019.07.004
  38. Yang, J. F., She, D. Y., Sun, M., Cheng, M. M., Rosin, P. L., & Wang, L. (2018). Visual Sentiment Prediction Based on Automatic Discovery of Affective Regions. IEEE Transactions on Multimedia, 20(9), 2513–2525. https://doi.org/10.1109/TMM.2018.2803520
  39. Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent Trends in Deep Learning Based Natural Language Processing [Review Article]. IEEE Computational Intelligence Magazine, 13(3), 55–75. https://doi.org/10.1109/MCI.2018.2840738
  40. Yusuf, A. A., Feng, C., & Mao, X.L. (2022). An analysis of graph convolutional networks and recent datasets for visual question answering. Artificial Intelligence Review, 55(8), 6277– 6300. https://doi.org/10.1007/s10462-022-10151-2
  41. Zadeh, A., Chen, M. H., Poria, S., Cambria, E., & Morency, L.-P. (2017). Tensor Fusion Network for Multimodal Sentiment Analysis. ArXiv:1707.07250 [Cs]. http://arxiv.org/abs/1707.07250
  42. Zhang, K., Li, Y. Q., Wang, J. Y., Cambria, E., & Li, X. L. (2022). Real-Time Video Emotion Recognition Based on Reinforcement Learning and Domain Knowledge. IEEE Transactions on Circuits and Systems for Video Technology, 32(3), 1034–1047. https://doi.org/10.1109/TCSVT.2021.3072412
  43. Zhang, S. X., Wei, Z. L., Wang, Y., & Liao, T. (2018). Sentiment analysis of Chinese micro-blog text based on extended sentiment dictionary. Future Generation Computer Systems, 81, 395– 403. https://doi.org/10.1016/j.future.2017.09.048
  44. Zhang, W., Wang, M., & Zhu, Y. C. (2020). Does government information release really matter in regulating contagion-evolution of negative emotion during public emergencies? From the perspective of cognitive big data analytics. International Journal of Information Management, 50, 498–514. https://doi.org/10.1016/j.ijinfomgt.2019.04.001
  45. Zhao, Z. Y., Zhu, H. Y., Xue, Z. H., Liu, Z., Tian, J., Chua, M. C. H., & Liu, M. F. (2019). An image-text consistency driven multimodal sentiment analysis approach for social media. Information Processing & Management, 56(6), 102097. https://doi.org/10.1016/j.ipm.2019.102097
  46. Zhou, Y. Q., & Moy, P. (2007). Parsing Framing Processes: The Interplay Between Online Public Opinion and Media Coverage. Journal of Communication, 57(1), 79–98. https://doi.org/10.1111/j.0021-9916.2007.00330.x
  47. Zhu, T., Li, L. D., Yang, J. F., Zhao, S. C., Liu, H. T., & Qian, J. S. (2022). Multimodal Sentiment Analysis With Image-Text Interaction Network. IEEE Transactions on Multimedia, 1–1. https://doi.org/10.1109/TMM.2022.3160060
DOI: https://doi.org/10.2478/jdis-2023-0012 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Page range: 61 - 87
Submitted on: Nov 7, 2022
Accepted on: May 5, 2023
Published on: Aug 25, 2023
Published by: Chinese Academy of Sciences, National Science Library
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Tao Fan, Hao Wang, Peng Wu, Chen Ling, Milad Taleby Ahvanooey, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution 4.0 License.