Have a personal or library account? Click to login
A comparison of citation disciplinary structure in science between the G7 countries and the BRICS countries Cover

A comparison of citation disciplinary structure in science between the G7 countries and the BRICS countries

Open Access
|Sep 2018

References

  1. Aksnes, D. W., Leeuwen, T. N. V., & Sivertsen, G. (2014). The effect of booming countries on changes in the relative specialization index (RSI) on country level. Scientometrics, 101(2), 1391–1401.
  2. Aurell, E., & Ekeberg, M. (2012). Inverse Ising inference using all the data. Physical Review Letters, 108(9), 090201.
  3. Bongioanni, I., Daraio, C., & Ruocco G. (2014). A quantitative measure to compare the disciplinary profiles of research systems and their evolution over time. Journal of Informetrics, 8(3), 710–727.
  4. Balassa, B. (2010). Trade liberalisation and “revealed” comparative advantage, Manchester School, 33(2), 99–123.
  5. Bruzzone, L., Roli F., & Serpico S. B. (1995). An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection. IEEE Transations on Geoscience and Remote Sensing, 33(6), 1318–1321.
  6. Bound, K. (2008). Brazil: The natural knowledge-economy. DEMOS. https://www.demos.co.uk/files/Brazil_NKE_web.pdf.
  7. Daraio, C., Fabbri F., Gavazzi, G., Izzo, M. G., Leuzzi, L., Quaglia, G., & Ruocco, G. (2017). Assessing the interdependencies between scientific disciplinary profiles at the country level: A pseudo-likelihood approach. 2017 ISSI Conference Proceedings. China: Wuhan University, 2017, 1448–1459.
  8. Ding, J., Ahlgren, P., Yang, L., & Yue, T. (2018). Disciplinary structures in Nature, Science, and PNAS: journal and country levels. Scientometrics (3), 1–36.
  9. Everitt, B., Landau, S. & Leese, M. (2001). Cluster Analysis (Forth Edition.). London: Arnold.
  10. Glänzel, W., Debackere, K., & Meyer, M. (2008). “Triad” or “tetrad”? On global changes in a dynamic world. Scientometrics, 74(1), 71–88.
  11. Glänzel, W., Leta, J., & Thijs, B. (2006). Science in Brazil. Part 1: A macro-level comparative study, Scientometrics, 67(1), 67–86.
  12. Glänzel, W., & Schlemmer, B. (2007). National research profiles in a changing Europe (1983–2003): An exploratory study of sectoral characteristics in the Triple Helix. Scientometrics, 70(2), 267–275.
  13. Grupp, H. (1998). Foundations of the Economics of Innovation: Theory, measurement, and practice. Books, 30(4), 379–379.
  14. Harzing, A. W., & Giroud, A. (2014). The competitive advantage of nations: An application to academia. Journal of Informetrics, 8(1), 29–42.
  15. Julio, C. R. P., Maria, M. L. E., & Dirce, M. T. Z. (1998). Brazilian sciences and government funding at the state of Sao Paulo. Scientometrics, 43(2), 177–188.
  16. Kaufman, L. & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis. DBLP, New York: Wiley.
  17. King, D. A. (2004). The scientific impact of nations. Nature, 430(6997), 311–6.
  18. Kozlowski, J., Radosevic, S., & Ircha, D. (1999). History matters: the inherited disciplinary structure of the post-communist science in countries of central and Eastern Europe and its restructuring. Scientometrics, 45(1), 137–166.
  19. Li, N. (2017). Evolutionary patterns of national disciplinary profiles in research: 1996–2015. Scientometrics, 111(1), 1–28.
  20. Liang, L. M., Havemann, F., Heinz, M., & Wagner-Dobler, R. (2006). Structural similarities between science growth dynamics in China and in western countries. Scientometrics, 66(2), 311–325.
  21. Radosevic, S., & Yoruk, E. (2014). Are there global shifts in the world science base? Analysing the catching up and falling behind of world regions. Scientometrics, 101(3), 1897–1924.
  22. Schulz P. A, & Manganote E. J. T. (2012). Revisiting country research profiles: learning about the scientific cultures. Scientometrics, 93(2), 517–531.
  23. Salton, G., & McGill, M. J. (1983). Introduction to modern information retrieval. New York: McGraw-Hill.
  24. Schmoch, U., Licht, G., & Reinhard, M. (eds.) (2000). Wissens-und technologietransfer in Deutschland. Stuttgart: Fraunhofer IRB Verlag.
  25. Shibayama, S. (2011). Distribution of academic research funds: a case of Japanese national research grant. Scientometrics, 88(1), 43–60.
  26. Raan, A. F. J. V. (2003). The use of bibliometric analysis in research performance assessment and monitoring of interdisciplinary scientific developments. Technikfolgenabschautzung - Theorie und Praxis(1), 20–29.
  27. Wu, J. (2015). Distributions of scientific funding across universities and research disciplines. Journal of Informetrics, 9(1), 183–196.
  28. Yang, L. Y., Yue, T., Ding, J. L., & Han, T. (2012). A comparison of disciplinary structure in science between the G7 and the BRIC countries by bibliometric methods. Scientometrics, 93(2), 497–516.
  29. Yue, H. J. (2008). Prediction and relative dynamic performance on field of research of China. Studies in Science of Science, 26(3), 530–538.
  30. Zhu, W. T. (2006). A study on NSFC’s interdisciplinary research funding system. Bulletin of National Natural Science Foundation of China. 20(3), 184–189.
DOI: https://doi.org/10.2478/jdis-2018-0012 | Journal eISSN: 2543-683X | Journal ISSN: 2096-157X
Language: English
Page range: 14 - 30
Submitted on: Jul 4, 2018
Accepted on: Aug 24, 2018
Published on: Sep 3, 2018
Published by: Chinese Academy of Sciences, National Science Library
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Ting Yue, Liying Yang, Per Ahlgren, Jielan Ding, Shuangqing Shi, Rainer Frietsch, published by Chinese Academy of Sciences, National Science Library
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.