References
- Lee KH, Ko BG, Jin YB, Chang WJ. Explainable Paroxysmal Atrial Fibrillation Diagnosis Using Electrocardiogram with Artificial Intelligence. Europace. 2023 May 24;25(Supplemen t_1):euad122.526. doi: 10.1093/europace/euad122.526
- Schnabel RB, Sullivan LM, Levy D, et al. Development of a risk score for atrial fibrillation (Framingham Heart Study): a community-based cohort study. The Lancet. 2009 Feb;373(9665):739-745. doi: 10.1016/S0140-6736(09)60443-8
- Wright JD, Folsom AR, Coresh J, et al. The ARIC (Atherosclerosis Risk In Communities) Study. Journal of the American College of Cardiology. 2021 Jun;77(23):2939-2959. doi: 10.1016/j. jacc.2021.04.035
- Alonso A, Krijthe BP, Aspelund T, et al. Simple Risk Model Predicts Incidence of Atrial Fibrillation in a Racially and Geographically Diverse Population: the CHARGE-AF Consortium. JAHA. 2013 Mar 12;2(2):e000102. doi: 10.1161/JAHA.112.000102
- Goudis C, Daios S, Dimitriadis F, Liu T. CHARGE-AF: A Useful Score For Atrial Fibrillation Prediction? CCR. 2023 Mar;19(2):e010922208402. doi: 10.2174/1573403X186662209 01102557
- Lin F, Zhang P, Chen Y, et al. Artificial-intelligence-based risk prediction and mechanism discovery for atrial fibrillation using heart beat-to-beat intervals. Med. 2024 May;5(5):414-431.e5. doi: 10.1016/j.medj.2024.02.006
- Hygrell T, Viberg F, Dahlberg E, et al. An artificial intelligencebased model for prediction of atrial fibrillation from singlelead sinus rhythm electrocardiograms facilitating screening. EP Europace. 2023 Apr 15;25(4):1332-1338. doi: 10.1093/europace/euad036
- Hill NR, Groves L, Dickerson C, et al. Identification of undiagnosed atrial fibrillation using a machine learning riskprediction algorithm and diagnostic testing (PULsE-AI) in primary care: a multi-centre randomized controlled trial in England. European Heart Journal – Digital Health. 2022 Jul 6;3(2):195-204. doi: 10.1093/ehjdh/ztac009
- Chen L, Huang SH, Wang TH, et al. Deep learning-based automatic left atrial appendage filling defects assessment on cardiac computed tomography for clinical and subclinical atrial fibrillation patients. Heliyon. 2023 Jan;9(1):e12945. doi: 10.1016/j.heliyon.2023.e12945
- Grout RW, Hui SL, Imler TD, et al. Development, validation, and proof-of-concept implementation of a two-year risk prediction model for undiagnosed atrial fibrillation using common electronic health data (UNAFIED). BMC Med Inform Decis Mak. 2021 Dec;21(1):112. doi: 10.1186/s12911-021-01482-1
- Baek YS, Lee SC, Choi WI, Kim DH. Prediction of atrial fibrillation from normal ECG using artificial intelligence in patients with unexplained stroke. European Heart Journal. 2020 Nov 1;41(Supplement_2):ehaa946.0348. doi: 10.1093/ehjci/ehaa946.0348
- Pujadas ER, Raisi-Estabragh Z, Szabo L, et al. Atrial fibrillation prediction by combining ECG markers and CMR radiomics. Sci Rep. 2022 Nov 7;12(1):18876. doi: 10.1038/s41598-022-21663-w
- Yagi N, Suzuki S, Hirota N, Arita T, Otuka T, Yamashita T. Prediction of persistent form of atrial fibrillation using left atrial morphology on preprocedural computed tomography: application of radiomics. European Heart Journal. 2022 Oct 3;43(Supplement_2):ehac544.327. doi: 10.1093/eurheartj/ehac544.327
- Isaksen JL, Baumert M, Hermans ANL, Maleckar M, Linz D. Artificial intelligence for the detection, prediction, and management of atrial fibrillation. Herzschr Elektrophys. 2022 Mar;33(1):34-41. doi: 10.1007/s00399-022-00839-x
- Arfat Y, Mittone G, Esposito R, Cantalupo B, De Ferrari GM, Aldinucci M. Machine learning for cardiology. Minerva Cardiol Angiol [Internet]. 2022 Mar [cited 2024 May 20];70(1). doi: 10.23736/S2724-5683.21.05709-4
- Currie G, Hawk KE, Rohren E, Vial A, Klein R. Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging. Journal of Medical Imaging and Radiation Sciences. 2019 Dec;50(4):477-487. doi: 10.1016/j.jmir.2019.09.005
- Warraich HJ, Gandhavadi M, Manning WJ. Mechanical Discordance of the Left Atrium and Appendage: A Novel Mechanism of Stroke in Paroxysmal Atrial Fibrillation. Stroke. 2014 May;45(5):1481-1484. doi: 10.1161/STROKEAHA.114.004800
- Melzi P, Tolosana R, Cecconi A, et al. Analyzing artificial intelligence systems for the prediction of atrial fibrillation from sinus-rhythm ECGs including demographics and feature visualization. Sci Rep. 2021 Nov 23;11(1):22786. doi: 10.1038/s41598-021-02179-1
- Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. The Lancet. 2019 Sep;394(10201):861-867. doi: 10.1016/S0140-6736(19)31721-0
- Svennberg E, Friberg L, Frykman V, Al-Khalili F, Engdahl J, Rosenqvist M. Clinical outcomes in systematic screening for atrial fibrillation (STROKESTOP): a multicentre, parallel group, unmasked, randomised controlled trial. The Lancet. 2021 Oct;398(10310):1498-1506. doi: 10.1016/S0140-6736(21)01637-8
- Kemp Gudmundsdottir K, Fredriksson T, Svennberg E, et al. Stepwise mass screening for atrial fibrillation using N-terminal B-type natriuretic peptide: the STROKESTOP II study. EP Europace. 2020 Jan 1;22(1):24-32. doi: 10.1093/europace/euz255
- Williams K, Modi RN, Dymond A, et al. Cluster randomised controlled trial of screening for atrial fibrillation in people aged 70 years and over to reduce stroke: protocol for the pilot study for the SAFER trial. BMJ Open. 2022 Sep;12(9):e065066. doi: 10.1136/bmjopen-2022-065066
- Tseng AS, Noseworthy PA. Prediction of Atrial Fibrillation Using Machine Learning: A Review. Front Physiol. 2021 Oct 28;12:752317. doi: 10.3389/fphys.2021.752317
- Nattel S, Burstein B, Dobrev D. Atrial Remodeling and Atrial Fibrillation: Mechanisms and Implications. Circ: Arrhythmia and Electrophysiology. 2008 Apr;1(1):62-73. doi: 10.1161/CIRCEP.107.754564
- Xu HF, He YM, Qian YX, Zhao X, Li X, Yang XJ. Left ventricular posterior wall thickness is an independent risk factor for paroxysmal atrial fibrillation. West Indian Med J. 2011 Dec;60(6):647-652.
- Hirose T, Kawasaki M, Tanaka R, et al. Left atrial function assessed by speckle tracking echocardiography as a predictor of new-onset non-valvular atrial fibrillation: results from a prospective study in 580 adults. European Heart Journal – Cardiovascular Imaging. 2012 Mar 1;13(3):243-250. doi: 10.1093/ejechocard/jer251
- Siebermair J, Suksaranjit P, McGann CJ, et al. Atrial fibrosis in non-atrial fibrillation individuals and prediction of atrial fibrillation by use of late gadolinium enhancement magnetic resonance imaging. Cardiovasc Electrophysiol. 2019 Apr;30(4):550-556. doi: 10.1111/jce.13846
- Anagnostopoulos I, Kousta M, Kossyvakis C, et al. Epicardial Adipose Tissue and Atrial Fibrillation Recurrence following Catheter Ablation: A Systematic Review and Meta-Analysis. JCM. 2023 Oct 5;12(19):6369. doi: 10.3390/jcm12196369
- Halaţiu V-B, Benedek I, Rodean I-P, et al. Coronary Computed Tomography Angiography-Derived Modified Duke Index Is Associated with Peri-Coronary Fat Attenuation Index and Predicts Severity of Coronary Inflammation. Medicina. 2024; 60(5):765. doi: 10.3390/medicina60050765
- Gerculy R, Benedek I, Kovács I, et al. CT-Assessment of Epicardial Fat Identifies Increased Inflammation at the Level of the Left Coronary Circulation in Patients with Atrial Fibrillation. JCM. 2024 Feb 26;13(5):1307. doi: 10.3390/jcm13051307Journal of Cardiovascular Emergencies 2025;11(4):124-129
- West HW, Siddique M, Williams MC, et al. Deep-Learning for Epicardial Adipose Tissue Assessment With Computed Tomography. JACC: Cardiovascular Imaging. 2023 Jun;16(6):800-816. doi: 10.1016/j.jcmg.2022.11.018
- Antoniades C, Tousoulis D, Vavlukis M, et al. Perivascular adipose tissue as a source of therapeutic targets and clinical biomarkers. European Heart Journal. 2023 Oct 12;44(38):3827-3844. doi: 10.1093/eurheartj/ehad484
- Chan K, Wahome E, Tsiachristas A, et al. Inflammatory risk and cardiovascular events in patients without obstructive coronary artery disease: the ORFAN multicentre, longitudinal cohort study. The Lancet. 2024 Jun;403(10444):2606-2618.
- Sieweke JT, Hagemus J, Biber S, et al. Echocardiographic Parameters to Predict Atrial Fibrillation in Clinical Routine The EAHsy-AF Risk Score. Front Cardiovasc Med. 2022 Mar 8;9:851474. doi: 10.3389/fcvm.2022.851474
- Naghavi M, Yankelevitz D, Reeves AP, et al. AI-enabled left atrial volumetry in coronary artery calcium scans (AI-CACTM) predicts atrial fibrillation as early as one year, improves CHARGE-AF, and outperforms NT-proBNP: The multi-ethnic study of atherosclerosis. Journal of Cardiovascular Computed Tomography. 2024 Apr;S1934592524000790. doi: 10.1016/j. jcct.2024.05.034