Have a personal or library account? Click to login
The Evolution of Computer-assisted Detection of Pulmonary Embolism from Volume to Voxel Cover

The Evolution of Computer-assisted Detection of Pulmonary Embolism from Volume to Voxel

Open Access
|Mar 2025

References

  1. Raskob GE, Angchaisuksiri P, Blanco AN, et al; ISTH Steering Committee for World Thrombosis Day. Thrombosis: a major contributor to global disease burden. Arterioscler Thromb Vasc Biol. 2014 Nov;34(11):2363–71. doi: 10.1161/ATVBAHA.114.304488
  2. Wendelboe AM, Raskob GE. Global Burden of Thrombosis: Epidemiologic Aspects. Circ Res. 2016 Apr 29;118(9):1340–7. doi: 10.1161/CIRCRESAHA.115.306841
  3. Cohen AT, Agnelli G, Anderson FA, et al. Venous thromboembolism (VTE) in Europe. Thrombosis and Haemostasis. 2007 Oct;98(10):756–64. doi: 10.1160/TH07-03-0212
  4. Keller K, Hobohm L, Ebner M, et al. Trends in thrombolytic treatment and outcomes of acute pulmonary embolism in Germany. Eur Heart J. 2020 Jan 21;41(4):522–529. doi: 10.1093/eurheartj/ehz236
  5. Dentali F, Ageno W, Pomero F, Fenoglio L, Squizzato A, Bonzini M. Time trends and case fatality rate of in-hospital treated pulmonary embolism during 11 years of observation in Northwestern Italy. Thromb Haemost. 2016 Jan;115(2):399–405. doi: 10.1160/TH15-02-0172
  6. de Miguel-Díez J, Jiménez-García R, Jiménez D, et al. Trends in hospital admissions for pulmonary embolism in Spain from 2002 to 2011. Eur Respir J. 2014 Oct;44(4):942–50. doi: 10.1183/09031936.00194213
  7. Katsoularis I, Fonseca-Rodríguez O, Farrington P, et al. Risks of deep vein thrombosis, pulmonary embolism, and bleeding after covid-19: nationwide self-controlled cases series and matched cohort study. BMJ. 2022 Apr 6;377:e069590. doi: 10.1136/bmj-2021-069590
  8. Estrada-Y-Martin RM, Oldham SA. CTPA as the gold standard for the diagnosis of pulmonary embolism. Int J Comput Assist Radiol Surg. 2011 Jul;6(4):557–63. doi: 10.1007/s11548-010-0526-4
  9. Kocher KE, Meurer WJ, Fazel R, Scott PA, Krumholz HM, Nallamothu BK. National trends in use of computed tomography in the emergency department. Ann Emerg Med. 2011 Nov;58(5):452–62.e3. doi: 10.1016/j.annemergmed.2011.05.020
  10. Portoghese I, Galletta M, Coppola RC, Finco G, Campagna M. Burnout and workload among health care workers: the moderating role of job control. Saf Health Work. 2014 Sep;5(3):152–7. doi: 10.1016/j.shaw.2014.05.004
  11. Bouma H, Sonnemans JJ, Vilanova A, Gerritsen FA. Automatic detection of pulmonary embolism in CTA images. IEEE Trans Med Imaging. 2009 Aug;28(8):1223–1230. doi: 10.1109/TMI.2009.2013618
  12. Pichon E, Novak CL, Kiraly AP, Naidich DP. A novel method for pulmonary emboli visualization from high-resolution CT images. In: SPIE Proceedings Volume 5367. Medical Imaging 2004: Visualization, Image-Guided Procedures, and Display, 2004; p. 161.
  13. LeCun Y, Bottou L, Bengio L, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE. 1998;86(11):2278–2324. doi: 10.1109/5.726791
  14. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Communications of the ACM. 2017;60(6):84–90. doi: 10.1145/3065386
  15. Johnson PT. Artifacts mimicking pulmonary embolism. Pearls and Pitfalls in Cardiovascular Imaging: Pseudolesions, Artifacts and Other Difficult Diagnoses. Cambridge University Press, 2015. pp. 134–136. doi: 10.1017/CBO9781139152228.044
  16. Ritchie G, McGurk S, McCreath C, Graham C, Murchison JT. Prospective evaluation of unsuspected pulmonary embolism on contrast enhanced multidetector CT (MDCT) scanning. Thorax. 2007 Jun;62(6):536–40. doi: 10.1136/thx.2006.062299
  17. Stefanidis K, Green J, Konstantelou E, Robbie H. Flow artefact mimicking pulmonary embolism in pulmonary hypertension. BMJ Case Rep. 2020 Feb 26;13(2):e234652. doi: 10.1136/bcr-2020-234652
  18. Ajmera P, Kharat A, Seth J, et al. A deep learning approach for automated diagnosis of pulmonary embolism on computed tomographic pulmonary angiography. BMC Med Imaging. 2022 Nov 11;22(1):195. doi: 10.1186/s12880-022-00916-0
  19. Moore AJE, Wachsmann J, Chamarthy MR, Panjikaran L, Tanabe Y, Rajiah P. Imaging of acute pulmonary embolism: an update. Cardiovasc Diagn Ther. 2018 Jun;8(3):225–243. doi: 10.21037/cdt.2017.12.01
  20. Huang SC, Huo Z, Steinberg E, et al. INSPECT: A multimodal dataset for pulmonary embolism diagnosis and prognosis. arXiv:2311.10798 [Preprint]. 2023. Available from: https://arxiv.org/abs/2311.10798
  21. Zhou Y, Huang SC, Fries JA, et al. Radfusion: RadFusion: Benchmarking Performance and Fairness for Multimodal Pulmonary Embolism Detection from CT and HER. arXiv:2111.11665 [Preprint]. 2021. Available from: https://arxiv.org/abs/2111.11665
  22. Colak E, Kitamura FC, Hobbs SB, et al; RSNA-STR Annotators and Dataset Curation Contributors. The RSNA Pulmonary Embolism CT Dataset. Radiol Artif Intell. 2021 Jan 20;3(2):e200254. doi: 10.1148/ryai.2021200254
  23. Callejas MF, Lin HM, Howard T, et al. Augmentation of the RSNA Pulmonary Embolism CT Dataset with Bounding Box Annotations and Anatomic Localization of Pulmonary Emboli. Radiol Artif Intell. 2023 May 3;5(3):e230001. doi: 10.1148/ryai.230001
  24. Masoudi M, Pourreza HR, Saadatmand-Tarzjan M, Eftekhari N, Zargar FS, Rad MP. A new dataset of computed-tomography angiography images for computer-aided detection of pulmonary embolism. Sci Data. 2018 Sep 4;5:180180. doi: 10.1038/sdata.2018.180
  25. Lanza E, Ammirabile A, Francone M. nnU-Net-based deep-learning for pulmonary embolism: detection, clot volume quantification, and severity correlation in the RSPECT dataset. Eur J Radiol. 2024 Aug;177:111592. doi: 10.1016/j.ejrad.2024.111592
  26. Masutani Y, MacMahon H, Doi K. Computerized detection of pulmonary embolism in spiral CT angiography based on volumetric image analysis. IEEE Transactions on Medical Imaging. 2002 Dec;21(12):1517–23. doi: 10.1109/TMI.2002.806586
  27. Engelke C, Schmidt S, Bakai A, Auer F, Marten K. Computer-assisted detection of pulmonary embolism: performance evaluation in consensus with experienced and inexperienced chest radiologists. European Radiology. 2008 Feb;18(2):298–307. doi: 10.1007/s00330-007-0770-3
  28. Tajbakhsh N, Gotway MB, Liang J. Computer-aided pulmonary embolism detection using a novel vessel-aligned multi-planar image representation and convolutional neural networks. In Hornegger J, Frangi AF, Wells WM, Frangi AF, Navab N, Hornegger J, Navab N, Wells WM, Wells WM, Frangi AF, Hornegger J, Navab N, editors, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015 - 18th International Conference, Proceedings. Springer Verlag. 2015. p. 62–69. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)). doi: 10.1007/978-3-319-24571-3_8
  29. Huang SC, Kothari T, Banerjee I, et al. PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging. NPJ Digital Medicine. 2020 Jan 24;3(1):61. doi: 10.1038/s41746-020-0266-y
  30. Kahraman AT, Fröding T, Toumpanakis D, Gustafsson CJ, Sjöblom T. Enhanced classification performance using deep learning based segmentation for pulmonary embolism detection in CT angiography. Heliyon. 2024;10(19):e38118. doi: 10.1016/j.heliyon.2024.e38118
  31. Weikert T, Winkel DJ, Bremerich J, et al. Automated detection of pulmonary embolism in CT pulmonary angiograms using an AI-powered algorithm. Eur Radiol. 2020 Dec;30(12):6545–6553. doi: 10.1007/s00330-020-06998-0
  32. Condrea F, Rapaka S, Itu L, et al. Anatomically aware dual-hop learning for pulmonary embolism detection in CT pulmonary angiograms. Comput Biol Med. 2024 May;174:108464. doi: 10.1016/j.compbiomed.2024.108464
  33. Maizlin ZV, Vos PM, Godoy MC, Cooperberg PL. Computer-aided detection of pulmonary embolism on CT angiography: initial experience. J Thorac Imaging. 2007 Nov;22(4):324–9. doi: 10.1097/RTI.0b013e31815b89ca. Erratum in: J Thorac Imaging. 2008 Feb;23(1):59. Godoy, Myrna B [corrected to Godoy, Myrna C].
  34. Wittenberg R, Peters JF, Sonnemans JJ, Prokop M, Schaefer-Prokop CM. Computer-assisted detection of pulmonary embolism: evaluation of pulmonary CT angiograms performed in an on-call setting. Eur Radiol. 2010 Apr;20(4):801–6. doi: 10.1007/s00330-009-1628-7
  35. Das M, Mühlenbruch G, Helm A, et al. Computer-aided detection of pulmonary embolism: influence on radiologists' detection performance with respect to vessel segments. Eur Radiol. 2008 Jul;18(7):1350–5. doi: 10.1007/s00330-008-0889-x
  36. Zhou C, Chan HP, Patel S, et al. Preliminary investigation of computer-aided detection of pulmonary embolism in three-dimensional computed tomography pulmonary angiography images. Acad Radiol. 2005 Jun;12(6):782–92. doi: 10.1016/j.acra.2005.01.014
  37. Ma X, Ferguson EC, Jiang X, Savitz SI, Shams S. A multitask deep learning approach for pulmonary embolism detection and identification. Sci Rep. 2022 Jul 29;12(1):13087. doi: 10.1038/s41598-022-16976-9
  38. Doğan K, Selçuk T, Alkan A. An Enhanced Mask R-CNN Approach for Pulmonary Embolism Detection and Segmentation. Diagnostics (Basel). 2024 May 26;14(11):1102. doi: 10.3390/diagnostics14111102
  39. Huhtanen H, Nyman M, Mohsen T, Virkki A, Karlsson A, Hirvonen J. Automated detection of pulmonary embolism from CT-angiograms using deep learning. BMC Med Imaging. 2022 Mar 14;22(1):43. doi: 10.1186/s12880-022-00763-z
  40. Long K, Tang L, Pu X, et al. Probability-based mask r-cnn for pulmonary embolism detection. Neurocomputing. 2021;422:345–353. doi: 10.1016/j.neucom.2020.10.022
  41. Kiourt C, Feretzakis G, Dalamarinis K, et al. Pulmonary embolism identification in computerized tomography pulmonary angiography scans with deep learning technologies in COVID-19 patients. arXiv:2105.11187 [Preprint]. 2021. Dataset: 673 images. Available from: https://arxiv.org/abs/2105.11187
  42. Xu H, Li H, Xu Q, et al. Automatic detection of pulmonary embolism in computed tomography pulmonary angiography using Scaled-YOLOv4. Med Phys. 2023 Jul;50(7):4340–4350. doi: 10.1002/mp.16218
  43. Bushra F, Chowdhury MEH, Sarmun R, et al. Deep learning in computed tomography pulmonary angiography imaging: A dual-pronged approach for pulmonary embolism detection. Expert Systems with Applications. 2024;245:123029. doi: 10.1016/j.eswa.2023.123029
  44. Özkan H, Osman O, Şahin S, Boz AF. A novel method for pulmonary embolism detection in CTA images. Computer Methods and Programs in Biomedicine. 2014 Mar;113(3):757–66. doi: 10.1016/j.cmpb.2013.12.014
  45. Tajbakhsh N, Shin JY, Gotway MB, Liang J. Computer-aided detection and visualization of pulmonary embolism using a novel, compact, and discriminative image representation. Med Image Anal. 2019 Dec;58:101541. doi: 10.1016/j.media.2019.101541
  46. Pu J, Gezer NS, Ren S, et al. Automated detection and segmentation of pulmonary embolisms on computed tomography pulmonary angiography (CTPA) using deep learning but without manual outlining. Med Image Anal. 2023 Oct;89:102882. doi: 10.1016/j.media.2023.102882
  47. Zhu H, Tao G, Jiang Y, et al. Automatic detection of pulmonary embolism on computed tomography pulmonary angiogram scan using a three-dimensional convolutional neural network. Eur J Radiol. 2024 Aug;177:111586. doi: 10.1016/j.ejrad.2024.111586
  48. Condrea F, Rapaka S, Leordeanu M. Label up: Learning pulmonary embolism segmentation from image level annotation through model explainability. arXiv:2412.07384 [Preprint]. 2024. Available from https://arxiv.org/abs/2412.07384
  49. Aghayev A, Furlan A, Patil A, et al. The rate of resolution of clot burden measured by pulmonary CT angiography in patients with acute pulmonary embolism. AJR Am J Roentgenol. 2013 Apr;200(4):791–7. doi: 10.2214/AJR.12.8624
  50. Zhang H, Cheng Y, Chen Z, et al. Clot burden of acute pulmonary thromboembolism: comparison of two deep learning algorithms, Qanadli score, and Mastora score. Quant Imaging Med Surg. 2022 Jan;12(1):66–79. doi: 10.21037/qims-21-140
  51. Liu Z, Yuan H, Wang H. CAM-Wnet: An effective solution for accurate pulmonary embolism segmentation. Med Phys. 2022 Aug;49(8):5294–5303. doi: 10.1002/mp.15719
  52. Cano-Espinosa C, Cazorla M, González G. Computer aided detection of pulmonary embolism using multi-slice multi-axial segmentation. Applied Sciences. 2020;10(8):2945. doi: 10.3390/app10082945
  53. Han J, He N, Zheng Q, Li L, Ma C. 3d pulmonary vessel segmentation based on improved residual attention u-net. Medicine in Novel Technology and Devices. 2023;20:100268. doi: 10.1016/j.medntd.2023.100268
  54. Olescki G, Clementin de Andrade JMC, Escuissato DL, Oliveira LF. A two step workflow for pulmonary embolism detection using deep learning and feature extraction. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization. 2023;11(3):341–350. doi: 10.1080/21681163.2022.2060866
  55. Furlan A, Aghayev A, Chang CC, et al. Short-term mortality in acute pulmonary embolism: clot burden and signs of right heart dysfunction at CT pulmonary angiography. Radiology. 2012 Oct;265(1):283–93. doi: 10.1148/radiol.12110802
  56. Shen C, Yu N, Wen L, et al. Risk stratification of acute pulmonary embolism based on the clot volume and right ventricular dysfunction on CT pulmonary angiography. Clin Respir J. 2019 Nov;13(11):674–682. doi: 10.1111/crj.13064
  57. Huang WM, Wu WJ, Yang SH, et al. Quantitative volumetric computed tomography embolic analysis, the Qanadli score, biomarkers, and clinical prognosis in patients with acute pulmonary embolism. Sci Rep. 2022 May 10;12(1):7620. doi: 10.1038/s41598-022-11812-6
  58. Medrek S, Safdar Z. Epidemiology and Pathophysiology of Chronic Thromboembolic Pulmonary Hypertension: Risk Factors and Mechanisms. Methodist Debakey Cardiovasc J. 2016 Oct–Dec;12(4):195–198. doi: 10.14797/mdcj-12-4-195
  59. Ende-Verhaar YM, Cannegieter SC, Vonk Noordegraaf A, et al. Incidence of chronic thromboembolic pulmonary hypertension after acute pulmonary embolism: a contemporary view of the published literature. Eur Respir J. 2017 Feb 23;49(2):1601792. doi: 10.1183/13993003.01792-2016
DOI: https://doi.org/10.2478/jce-2025-0003 | Journal eISSN: 2457-5518 | Journal ISSN: 2457-550X
Language: English
Page range: 1 - 10
Submitted on: Feb 12, 2025
Accepted on: Mar 8, 2025
Published on: Mar 28, 2025
Published by: Asociatia Transilvana de Terapie Transvasculara si Transplant KARDIOMED
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Florin Condrea, Saikiran Rapaka, Lucian Itu, Marius Leordeanu, published by Asociatia Transilvana de Terapie Transvasculara si Transplant KARDIOMED
This work is licensed under the Creative Commons Attribution 3.0 License.