References
- Csányi, G. M., Nagy, D., Vági, R., Vadász, J. P., and Orosz, T. (2021). Challenges and Open Problems of Legal Document Anonymization. Symmetry, 13(8), 1490. Accessible at: https://doi.org/10.3390/sym13081490.
- Glaser, I., Schamberger, T., and Matthes, F. (2021). Anonymization of German legal court rulings. New York, NY, USA: Association for Computing Machinery. ICAIL 21. Accessible at: https://doi.org/10.1145/3462757.3466087.
- Niklaus, J., Mamié, R., Stürmer, M., Brunner, D., and Gygli, M. (2023). Automatic Anonymization of Swiss Federal Supreme Court Rulings. In Proceedings of the Natural Legal Language Processing Workshop 2023, pp. 159–165, Singapore. Association for Computational Linguistics. Accessible at: https://doi.org/10.18653/v1/2023.nllp-1.16.
- Licari, D., Romano, M., and Comande, G. (2022). Automatic Anonymization of Italian Legal Textual Documents using Deep Learning. ITA 2022. Accessible at: https://www.iris.sssup.it/handle/11382/548773.
- Oksanen, A., Hyvönen, E., Tamper, M., Tuominen, J., Ylimaa, H., Löytynoja, K., Kokkonen, M., and Hietanen, A. (2022). An Anonymization Tool for Open Data Publication of Legal Documents. In Joint Proceedings of ISWC2022 Workshops: the International Workshop on Artificial Intelligence Technologies for Legal Documents (AI4LEGAL) and the International Workshop on Knowledge Graph Summarization (KGSum), pp. 12–21.
- Straka, M. (2018). UDPipe 2.0 Prototype at CoNLL 2018 UD Shared Task. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies. Association for Computational Linguistics, Brussels, Belgium, pp. 197–207. Accessible at: https://doi.org/10.18653/v1/K18-2020.
- Straková, J., Straka, M., and Hajič, J. (2019). Neural Architectures for Nested NER through Linearization. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy, pp. 5326–5331. Accessible at: https://doi.org/10.18653/v1/P19-1527.