Have a personal or library account? Click to login

The Menzerath-Altmann law as the relation between lengths of words and morphemes in Czech

Open Access
|Dec 2021

References

  1. [1] Cramer, I. M. (2005). Das Menzerathsche Gesetz. In R. Köhler, G. Altmann and R. G. Piotrowski (eds.), Quantitative Linguistics. An International Handbook. Berlin/New York: de Gruyter, pages 659–688.
  2. [2] Popescu, I.-I., Altmann, G., Grzybek, P., Jayaram, B. D., Köhler, R., Krupa, V., Mačutek, J., Pustet, R., Uhlířová, L., and Vidya, M. N. (2009). Word Frequency Studies. Berlin/New York: de Gruyter.
  3. [3] Bentz, C., and Ferrer-i-Cancho, R. (2016). Zipf’s law of abbreviation as a language universal. In C. Bentz, G. Jäger and I. Yanovich (eds.), Proceedings of the Leiden Workshop on Capturing Phylogenetic Algorithms for Linguistics. University of Tübingen, online publication system. Available at: https://publikationen.uni-tuebingen.de/xmlui/handle/10900/68558.
  4. [4] Menzerath, P. (1954). Die Architektonik des deutschen Wortschatzes. Bonn: Dümmler.
  5. [5] Altmann, G. (1980). Prolegomena to Menzerath’s law. In R. Grothjahn (ed.), Glottometrika 2. Bochum: Brockmeyer, pages 1–10.
  6. [6] Altmann, G., and Schwibbe, M. H. (1989). Das Menzerathsche Gesetz in informationsverarbeitenden Systemen. Hildesheim: Georg Olms Verlag.
  7. [7] Kelih, E. (2010). Parameter interpretation of Menzerath law: Evidence from Serbian. In P. Grzybek, E. Kelih and J. Mačutek (eds.), Text and Language. Structures, Functions, Interrelations, Quantitative Perspectives. Wien: Praesens, pages 71–79.
  8. [8] Mačutek, J., and Rovenchak, A. (2011). Canonical word forms: Menzerath-Altmann law, phonemic length and syllabic length. In E. Kelih, V. Levickij and V. Matskulyak (eds.), Issues in Quantitative Linguistics 2. Lüdenscheid: RAM-Verlag, pages 136–147.
  9. [9] Mačutek, J., and Mikros, G. K. (2015). Menzerath-Altmann law for word length motifs. In G. K. Mikros and J. Mačutek (eds.), Sequences in Language and Text. Berlin/Boston: de Gruyter, pages 125–131.
  10. [10] Teupenhayn, R., and Altmann, G. (1984). Clause length and Menzerath’s law. In J. Boy and R. Köhler (eds.), Glottometrika 6. Bochum, Brockmeyer, pages 127–138.
  11. [11] Mačutek, J., Čech, R., and Milička, J. (2017). Menzerath-Altmann law in syntactic dependency structure. In S. Montemagni and J. Nivre (eds.), Proceedings of the Fourth International Conference on Dependency Linguistics (Depling 2017). Linköping: Linköping University Press, pages 100–107.
  12. [12] Köhler, R. (2015). Linguistic motifs. In G. K. Mikros and J. Mačutek (eds.), Sequences in Language and Text. Berlin/Boston: de Gruyter, pages 89–108.
  13. [13] Gerlach, R. (1982). Zur Überprüfung des Menzerath’schen Gesetzes im Bereich der Morphologie. In W. Lehfeldt and U. Strauss (eds.), Glottometrika 4. Bochum: Brockmeyer, pages 95–102.
  14. [14] Krott, A. (1996). Some remarks on the relation between word length and morpheme length. Journal of Quantitative Linguistics, 3(1), pages 29–37.10.1080/09296179608590061
  15. [15] Hřebíček, L. (1995). Text Levels. Constructs, Constituents and the Menzerath-Altmann Law. Trier: WVT.
  16. [16] Altmann, G., Erat, E., and Hřebíček, L. (1996). Word length distribution in Turkish texts. In P. Schmidt (ed.), Glottometrika 15. Trier: WVT, pages 195–204.
  17. [17] Milička, J. (2014). Menzerath’s law: The whole is greater than the sum of its parts. Journal of Quantitative Linguistics, 21(2), pages 85–99.10.1080/09296174.2014.882187
  18. [18] Slavíčková, E. (1975). Retrográdní morfematický slovník češtiny s připojenými inventárními slovníky českých morfémů kořenových, prefixálních a sufixálních. Praha: Academia.
  19. [19] Komárek, M., Kořenský, J., Petr, J., and Veselková, J. (1986). Mluvnice češtiny. Svazek 2. Tvarosloví. Praha: Academia.
  20. [20] Komárek, M. (2016). Příspěvky k české morfologii. 2nd ed. Olomouc: Periplum.
  21. [21] Altmann, G. (1992). Das Problem der Datenhomogenität. In B. Rieger (ed.), Glottometrika 13. Bochum: Brockmeyer, pages 287–298.
  22. [22] Grzybek, P. (2013). Homogeneity and heterogeneity within language(s) and text(s): Theory and practice of word length modeling. In R. Köhler and G. Altmann (eds.), Issues in Quantitative Linguistics 3. Lüdenscheid: RAM-Verlag, pages 66–99.
  23. [23] Williams, J. R., Bagrow, J. P., Danforth, C. M., and Dodds, P. S. (2015). Text mixing shapes the anatomy of rank-frequency distributions. Physical Review E, 91, 052811.10.1103/PhysRevE.91.052811
  24. [24] Čech, R., Kosek, P., Mačutek, J., and Navrátilová, O. (2020). Proč (někdy) nemíchat texty aneb Text jako možná výchozí jednotka lingvistické analýzy. Naše řeč, 103(1–2), pages 24–36.
  25. [25] Kubát, M. (2016). Kvantitativní analýza žánrů. Ostrava: Ostravská univerzita.
  26. [26] Mačutek, J., Chromý, J., and Koščová, M. (2019). A data-based classification of Slavic languages: Indices of qualitative variation applied to grapheme frequencies. Journal of Quantitative Linguistics, 26(1), pages 66–80.
  27. [27] Mačutek, J., and Wimmer, G. (2013). Evaluating goodness-of-fit of discrete distribution models in quantitative linguistics. Journal of Quantitative Linguistics, 20(3), pages 227–240.10.1080/09296174.2013.799912
  28. [28] Kelih, E. (2012). On the dependency of word length on text length. Empirical results form Russian and Bulgarian parallel texts. In S. Naumann, P. Grzybek, R. Vulanović and G. Altmann (eds.), Synergetic Linguistics. Text and Language as Dynamic Systems. Wien: Praesens, pages 67–80.
  29. [29] Čech, R., and Mačutek, J. (2021). The Menzerath-Altmann law in Czech poems by K. J. Erben. Proceedings of the Conference Plotting Poetry 4 (in print).
DOI: https://doi.org/10.2478/jazcas-2021-0037 | Journal eISSN: 1338-4287 | Journal ISSN: 0021-5597
Language: English
Page range: 405 - 414
Published on: Dec 30, 2021
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Kateřina Pelegrinová, Ján Mačutek, Radek Čech, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.