Have a personal or library account? Click to login
Pollen Count Dynamics in Rapeseed Stamens in Early Spring Cover

Pollen Count Dynamics in Rapeseed Stamens in Early Spring

Open Access
|Dec 2023

References

  1. Aizen, M. A., & Harder, L. D. (2007). Expanding the limits of the pollen-limitation concept: Effects of pollen quantity and quality. Ecology, 88(2), 271–281. DOI: 10.1890/06-1017
  2. Byers, D. L. (1995). Pollen quantity and quality as explanations for low seed set in small populations exemplified by Eupatorium (Asteraceae). American Journal of Botany, 82(8), 1000–1006. DOI: 10.2307/2446229
  3. Campos, M. G., Anjos, O., Chica, M., Campoy, P., Nozkova, J., Almaraz-Abarca, N., ... Carreck, N. L. (2021). Standard methods for pollen research. Journal of Apicultural Research, 60(4), 1–109. DOI: 10.1080/00218839.2021.1948240
  4. Carinanos, P., Emberlin, J., Galan, C., Dominguez-Vilches, E. (2000). Comparison of two pollen counting methods of slides from a hirst type volumetric trap. Aerobiologia, 16(3), 339–346. DOI: DOI 10.1023/A:1026577406912
  5. Chaturvedi, P., Wiese, A. J., Ghatak, A., Záveská Drábková, L., Weckwerth, W., ... Honys, D. (2021). Heat stress response mechanisms in pollen development. New Phytologist, 231(2), 571–585. DOI: 10.1111/nph.17380
  6. Chen, J., Li, Z., Ning, Y. (2014). Preparation method and biological effects of pollen suspension liquid for spraying pollination of Actinidia chinensis. International Journal of Fruit Science, 31(6), 1105–1109. DOI: 10.13925/j.cnki.gsxb.20140200
  7. Chen, Z., & Yu, J. (2010). Research strategies based on the analysis of rapeseed production in China. Chinese Journal of Oil Crop Sciences, 32(2), 303–308
  8. Comtois, P., Alcazar, P., Néron, D. (1999). Pollen counts statistics and its relevance to precision. Aerobiologia, 15(1), 19–28.
  9. Denisow, B., Masierowska, M., Winiarczyk, K., Rakoczy-Trojanowska, M. (2022). The pollen dispersal ability for cross-pollination in winter wheat (Triticum aestivum L.) is related to anther extrusion capability rather than to pollen output. South African Journal of Botany, 148, 283–292. DOI: 10.1016/j.sajb.2022.04.031
  10. Diepenbrock, W. (2000). Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Research, 67(1), 35–49. https://doi.org/10.1016/S0378-4290(00)00082-4
  11. Du, Y., Deng, X., Xu, Y., Nie, M. (2015). Determination of pollen number and pollen germination rate of five Aleurites fordii species. Journal of Central South University of Forestry & Technology, 63(12), 55–57. DOI: 10.14067/j.cnki.1673-923x.2015.12.010
  12. Fairhurst, S. M., Cole, L. J., Kocarkova, T., Jones-Morris, C., Jackson, G. (2021). Agronomic traits in oilseed rape (Brassica napus) can predict foraging resources for Insect pollinators. Agronomy, 11(3), 440. DOI: 10.3390/AGRONOMY11030440
  13. Fang, Y., LI, H., Liao, S., Lu, P., Lu, J. (2019). Effects of nitrogen and phosphorus application rate on flowering characteristics of oilseed rape. Chinese Journal of Oil Crop Sciences, 41(2), 199–204. DOI: 10.7505/j.issn.1007-9084.2019.02.006
  14. Földesi, R., Howlett, B. G., Grass, I., Batáry, P. (2021). Larger pollinators deposit more pollen on stigmas across multiple plant species - A meta-analysis. Journal of Applied Ecology, 58(4), 699–707. DOI: 10.1111/1365-2664.13798
  15. Godini, A. (1981). Counting pollen grains of some almond cultivars by means of haemocytometer. Rivista della Ortoflorofrutticoltura Italiana, 65(3), 173–178.
  16. Hedhly, A., Hormaza, J., Herrero, M. (2005). Influence of genotype-temperature interaction on pollen performance. Journal of Evolutionary Biology, 18(6), 1494–1502. DOI: 10.1111/j.1420-9101.2005.00939.x
  17. Hou, G., Zhu, Y., Pan, W. (1991). Study on problem of micro-pollen grain occurrence in cytoplasm sterile material of cabbage rape 1. survey on occurrence regularity of micro-pollen grain. Guizhou Agricultural Sciences, 000(002), 17–21.
  18. Hu, X., Zhou, F., Wang, X., Chen, H., Yang, L., ... Kang, L. (2023). Comparative transcriptome analysis of flower buds of the genic male sterile two-type line K116AB in Brassica napus. Molecular Plant Breeding, 1–13.
  19. Ilgin, M., Ergenoglu, F., & Caglar, S. (2007). Viability, germination and amount of pollen in selected caprifig types. Pakistan Journal of Botany, 39(1), 9–14.
  20. Jäger, K., Fábián, A., Barnabás, B. (2008). Effect of water deficit and elevated temperature on pollen development of drought sensitive and tolerant winter wheat (Triticum aestivum L.) genotypes. Acta Biologica Szegediensis, 52(1), 67–71.
  21. Kakui, H., Tsurisaki, E., Sassa, H., Moriguchi, Y. (2020). An improved pollen number counting method using a cell counter and mesh columns. Plant Methods, 16(1), 124. DOI: 10.1186/s13007-020-00668-4
  22. Kakui, H., Tsurisaki, E., Shibata, R., Moriguchi, Y. (2021). Factors affecting the number of pollen grains per male strobilus in Japanese cedar (Cryptomeria japonica). Plants, 10(5), 856. DOI: 10.3390/plants10050856
  23. Lei, Y., Huang, F., Duan, J., Kang, Y., Luo, Y., Chen, Y.,... Li, S. (2020). Screening and optimization of tea pollen suspension. Journal of Tea Communication, 47(04), 588–592.
  24. Masierowska, M. (2012). Floral display and reproductive system in brown mustard Brassica juncea (L.) Czern. et Coss. and white mustard Sinapis alba L., Brassicaceae. ed.. Lublin: Uniwersytet Przyrodniczy w Lublinie.
  25. Müller, F., & Rieu, I. (2016). Acclimation to high temperature during pollen development. Plant Reproduction, 29(1–2), 107–118. DOI: 10.1007/s00497-016-0282-x
  26. Ohnishi, S., Miyoshi, T., Shirai, S. (2010). Low temperature stress at different flower developmental stages affects pollen development, pollination, and pod set in soybean. Environmental and Experimental Botany, 69(1), 56–62. DOI: 10.1016/j.envexpbot.2010.02.007
  27. Oliveira, L. C., Matias, R., Furtado, M. T., Romero, R., de Brito, V. L. G. (2022). What explains the variation in length of stamens and styles in a pollen flower? a study exemplified by Macairea radula (Melastomataceae). Plant Systematics and Evolution, 308(2), 15. DOI: 10.1007/s00606-022-01808-0
  28. Orlovius, K. (2003). Oilseed rape. Fertilizing for high yield and quality, Bulletin, 16.
  29. Schlindwein, C., Wittmann, D., Martins, C. F., Hamm, A., Siqueira, J. A., Schiffler, D., ... Machado, I. C. (2005). Pollination of Campanula rapunculus L. (Campanulaceae): How much pollen flows into pollination and into reproduction of oligolectic pollinators? Plant Systematics and Evolution, 250(3–4), 147–156. DOI: 10.1007/s00606-004-0246-8
  30. Sidhu, R. K. (2019). Pollen storage in vegetable crops: A review. Journal of Pharmacognosy and Phytochemistry, 8(1S), 599–603.
  31. Sun, X., Shen, P., Yu, T., Zheng, Y., Wu, Z., ... Wang, C. (2020). Value evaluation of nectar and pollen sources of Brassica napus and Orychophragmus violaceus as winter green manure crop. Shandong Agricultural Sciences, 52(12), 47–50. DOI: 10.14083/j.issn.1001-4942.2020.12.009
  32. Szklanowska, K. (1995). Pollen flows of crowfoot family (Ranunculaceae L.) from some natural plant communities. Changes in fauna of wild bees in Europe. Bydgoszcz: Pedagogical University, 201–209.
  33. Thomson, J. D., & Goodell, K. (2001). Pollen Removal and Deposition by Honeybee and Bumblebee Visitors to Apple and Almond Flowers. The Journal of Applied Ecology, 38(5), 1032–1044. DOI: : 10.1046/j.1365-2664.2001.00657.x
  34. Vonhof, M. J., & Harder, L. D. (1995). Size-number trade-offs and pollen production by papilionaceous legumes. American Journal of Botany, 82(2), 230–238. https://doi.org/10.1002/j.1537-2197.1995.tb11491.x
  35. Wang, S., Zhong, M., Liao, G., Chen, L., XU, X. (2017). Comparison of pollen quantity and pollen viability of 41 male plants in Actinidia. Acta Agriculturae Universitatis Jiangxiensis, 39(3), 460–467. DOI: 10.13836/j.jjau.2017060
  36. Wang, X. (2011). A probabilistic model of flower fertility and factors influencing seed production in winter oilseed rape (Brassica napus L.). Doctor of Applied Mathematics, China Agriculture University, Paris. Retrieved from https://agritrop.cirad.fr/563870/ Available from CIRAD
  37. Wang, X., Fang, W., Chen, F., Teng, N. (2013). Determination of pollen quantity and features of pollen dispersal for 41 spray cut chrysanthemum cultivars. Acta Horticulturae Sinica, 40(04), 703–712. DOI: 10.16420/j.issn.0513-353x.2013.04.014
  38. Wang, X., Wang, H., Chen, F., Jiang, J., Fang, W., Liao, Y., ... Teng, N. (2014). Factors affecting quantity of pollen dispersal of spray cut chrysanthemum (Chrysanthemum morifolium). Bmc Plant Biology, 14, 5. DOI: 10.1186/1471-2229-14-5
  39. Wang, Z., Zhang, Y., Zhao, X., Hou, J., Guan, Z., Li, D., ... Shi, W. (2019). Analysis and solution of factors restricting high yield of rapeseed. Acta Agriculturae Jiangxi, 31(6), 45–51. DOI: 10.19386/j.cnki.jxnyxb.2019.06.08
  40. Warakomska, Z. (1972). Investigation on the pollen produced per flower by different plant species. Pszczelnicze Zeszyty Naukowe, 16(1), 63–90.
  41. Weryszko-Chmielewska, E., Sadowska, D. (2010). The phenology of flowering and pollen release in four species of linden (Tilia L.). Journal of Apicultural Science, 54(2), 99–108.
  42. Wilson, P., & Thomson, J. D. (1991). Heterogeneity among floral visitors leads to discordance between removal and deposition of pollen. Ecology (Durham), 72(4), 1503–1507. DOI: 10.2307/1941124
  43. Wizenberg, S. B., Weis, A. E., Campbell, L. G. (2020). Comparing methods for controlled capture and quantification of pollen in Cannabis sativa. Applications in Plant Sciences, 8(9), e11389. DOI: 10.1002/aps3.11389
  44. Wozniak, E., Waszkowska, E., Zimny, T., Sowa, S., Twardowski, T. (2019). The Rapeseed Potential in Poland and Germany in the Context of Production, Legislation, and Intellectual Property Rights. Frontiers in Plant Science, 10, 1423. DOI: 10.3389/fpls.2019.01423
  45. Wu, J., Fu, D., Chen, J., Cai, C., Yan, Q., ... Ou, L. (2017). Pollen quantity and viability in 65 litchi (Litchi chinensis Sonn.) cultivars. HortScience, 52(10), 1337–1341. DOI: 10.21273/HORTSCI12193-17
  46. Ye, Z., Du, J., Su, M., Li, L., Zhang, S. (2010). Cluster analysis for the quantity and germinating characteristics of the pollens from 92 peach cultivars. Acta Horticulturae Sinica, 37(4), 525–531. DOI: 10.16420/j.issn.0513-353x.2010.04.032
  47. Zhang, Y., Zhang, B., Yang, T., Zhang, J., Liu, B., Zhan, X., ... Liang, Y. (2020). The GAMYB-like gene SlMYB33 mediates flowering and pollen development in tomato. Hortic Res-England, 7(1), 133. DOI: 10.1038/s41438-020-00366-1
  48. Zhu, J., Lu, F., Wang, S., Guo, Y., Jiang, H., Huang, M., ... Chang, S. (2016). Comparison of pollen characteristics and fertility of six cultivars of blueberry. Nonwood Forest Research, 34(2), 101–108. DOI: 10.14067/j.cnki.1003-8981.2016.02.019
DOI: https://doi.org/10.2478/jas-2023-0008 | Journal eISSN: 2299-4831 | Journal ISSN: 1643-4439
Language: English
Page range: 103 - 114
Submitted on: Apr 17, 2023
Accepted on: Oct 9, 2023
Published on: Dec 22, 2023
Published by: Research Institute of Horticulture
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Zhijun Wei, Ran Liu, Guiling Ding, Yusuo Jiang, Jiaxing Huang, published by Research Institute of Horticulture
This work is licensed under the Creative Commons Attribution 4.0 License.