Have a personal or library account? Click to login
A review on innovations in prostate cancer diagnosis: automated techniques for gleason score estimation via mpMRI and DWSI imaging Cover

A review on innovations in prostate cancer diagnosis: automated techniques for gleason score estimation via mpMRI and DWSI imaging

Open Access
|Jan 2026

References

  1. Li, S., Wang, K.X., Li, J.L., He, Y., Wang, X.Y., Tang, W.R., Xie, W.H., Zhu, W., Wu, P.S. and Wang, X.P., 2023. AI-predicted mpMRI image features for the prediction of clinically significant prostate cancer. International urology and nephrology, 55(11), pp.2703–2715.
  2. Qiu, Yali & Hu, Yujin & Kong, Peiyao & Xie, Hai & Zhang, Xiaoliu & Cao, Jiuwen & Wang, Tianfu & Lei, Baiying. (2022). Automatic Prostate Gleason Grading Using Pyramid Semantic Parsing Network in Digital Histopathology. Frontiers in Oncology. 12. 772403.
  3. Fang, Q. and Jin, P., 2024. Clinical significance of MRI-DWI and PWI scans in identifying benign prostatic hyperplasia and prostate cancer. Journal of Men’s Health, 20(3), pp.83–88.
  4. Murgic, Jure & Frobe, Ana & Chua, Melvin. (2022). Recent Advances in Radiotherapy Modalities for Prostate Cancer. Acta clinica Croatica. 61. 57–64.
  5. Teică, R.V., Șerbănescu, M.S., Florescu, L.M. and Gheonea, I.A., 2023. Tumor Area Highlighting Using T2WI, ADC Map, and DWI Sequence Fusion on bpMRI Images for Better Prostate Cancer Diagnosis. Life, 13(4), p.910.
  6. Ursprung, S., Herrmann, J., Joos, N., Weiland, E., Benkert, T., Almansour, H., Lingg, A., Afat, S. and Gassenmaier, S., 2023. Accelerated diffusion-weighted imaging of the prostate using deep learning image reconstruction: A retrospective comparison with standard diffusion-weighted imaging. European Journal of Radiology, 165, p.110953.
  7. Shen, Y. and Wu, S., 2023. Value of dynamic contrast-enhanced MRI and DWI in diagnosis of prostate cancer and its pathological comparison. Journal of Men’s Health, 19(12), pp.119–126.
  8. Bhattacharya, I., Khandwala, Y.S., Vesal, S., Shao, W., Yang, Q., Soerensen, S.J., Fan, R.E., Ghanouni, P., Kunder, C.A., Brooks, J.D. and Hu, Y., 2022. A review of artificial intelligence in prostate cancer detection on imaging. Therapeutic advances in urology, 14, p.17562872221128791.
  9. Iqbal, S., Siddiqui, G.F., Rehman, A., Hussain, L., Saba, T., Tariq, U. and Abbasi, A.A., 2021. Prostate cancer detection using deep learning and traditional techniques. IEEE Access, 9, pp.27085–27100.
  10. Şerbănescu, M.S., Manea, N.C., Streba, L., Belciug, S., Pleşea, I.E., Pirici, I., Bungărdean, R.M. and Pleşea, R.M., 2020. Automated Gleason grading of prostate cancer using transfer learning from general-purpose deep-learning networks. Romanian Journal of Morphology and Embryology, 61(1), p.149.
  11. Kanna, G.P., Kumar, S.J., Parthasarathi, P. and Kumar, Y., 2023. A review on prediction and prognosis of the prostate cancer and gleason grading of prostatic carcinoma using deep transfer learning-based approaches. Archives of Computational Methods in Engineering, 30(5), pp.3113–3132.
  12. Chaddad, Ahmad & Tan, Guina & Liang, Xiaojuan & Hassan, Lama & Rathore, Saima & Desrosiers, Christian & Katib, Yousef & Niazi, Tamim. (2023). Advancements in MRI-Based Radiomics and Artificial Intelligence for Prostate Cancer: A Comprehensive Review and Future Prospects. Cancers. 15. 3839.
  13. Tamada, T., Ueda, Y., Ueno, Y., Kojima, Y., Kido, A. and Yamamoto, A., 2021. Diffusion-weighted imaging in prostate cancer. Magnetic Resonance Materials in Physics, Biology and Medicine, pp.1–15.
  14. Li, H., Lee, C.H., Chia, D., Lin, Z., Huang, W. and Tan, C.H., 2022. Machine learning in prostate MRI for prostate cancer: current status and future opportunities. Diagnostics, 12(2), p.289.
  15. Mehralivand, S., Yang, D., Harmon, S.A., Xu, D., Xu, Z., Roth, H., Masoudi, S., Kesani, D., Lay, N., Merino, M.J. and Wood, B.J., 2022. Deep learning-based artificial intelligence for prostate cancer detection at biparametric MRI. Abdominal Radiology, 47(4), pp.1425–1434.
  16. Machireddy, A., Meermeier, N., Coakley, F. and Song, X., 2020, July. Malignancy detection in prostate multi-parametric MR images using U-net with attention. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 1520–1523). IEEE.
  17. Soni, M., Khan, I.R., Babu, K.S., Nasrullah, S., Madduri, A. and Rahin, S.A., 2022. Light weighted healthcare CNN model to detect prostate cancer on multiparametric MRI. Computational Intelligence and Neuroscience, 2022(1), p.5497120.
  18. Jiang, W., Lin, Y., Vardhanabhuti, V., Ming, Y. and Cao, P., 2023. Joint cancer segmentation and PI-RADS classification on multiparametric MRI using MiniSegCaps network. Diagnostics, 13(4), p.615.
  19. Wang W, Wang G, Wu X, Ding X, Cao X, Wang L, Zhang J, Wang P. Automatic segmentation of prostate magnetic resonance imaging using generative adversarial networks. Clin Imaging. 2021 Feb; 70:1–9. doi: 10.1016/j.clinimag.2020.10.014. Epub 2020 Oct 17. PMID: 33120283.
  20. Huang, X., Zhang, B., Zhang, X., Tang, M., Miao, Q., Li, T. and Jia, G., 2021. Application of U-Net based multiparameter magnetic resonance image fusion in the diagnosis of prostate cancer. IEEE Access, 9, pp.33756–33768.
  21. Gavade, A.B., Kanwal, N., Gavade, P.A. and Nerli, R., 2023, October. Enhancing Prostate Cancer Diagnosis with Deep Learning: A Study using mpMRI Segmentation and Classification. In National Conference on CONTROL INSTRUMENTATION SYSTEM CONFERENCE (pp. 563–574). Singapore: Springer Nature Singapore.
  22. Hung, A.L.Y., Zheng, H., Miao, Q., Raman, S.S., Terzopoulos, D. and Sung, K., 2022. CAT-Net: A cross-slice attention transformer model for prostate zonal segmentation in MRI. IEEE transactions on medical imaging, 42(1), pp.291–303.
  23. Mehmood, M., Abbasi, S.H., Aurangzeb, K., Majeed, M.F., Anwar, M.S. and Alhussein, M., 2023. A classifier model for prostate cancer diagnosis using CNNs and transfer learning with multi-parametric MRI. Frontiers in Oncology, 13, p.1225490.
  24. Yi, Z., Ou, Z., Hu, J., Qiu, D., Quan, C., Othmane, B., Wang, Y. and Wu, L., 2022. Computer-aided diagnosis of prostate cancer based on deep neural networks from multi-parametric magnetic resonance imaging. Frontiers in Physiology, 13, p.918381.
  25. Duran, A., Dussert, G., Rouvière, O., Jaouen, T., Jodoin, P.M. and Lartizien, C., 2022. ProstAttention-Net: A deep attention model for prostate cancer segmentation by aggressiveness in MRI scans. Medical Image Analysis, 77, p.102347.
  26. Zhong, Z., Ryu, K., Mao, J., Sun, K., Dan, G., Vasanawala, S.S. and Zhou, X.J., 2023. Accelerating High b-Value Diffusion-Weighted MRI Using a Convolutional Recurrent Neural Network (CRNN-DWI). Bioengineering, 10(7), p.864.
  27. Hu, L., Fu, C., Song, X., Grimm, R., Von Busch, H., Benkert, T., Kamen, A., Lou, B., Huisman, H., Tong, A. and Penzkofer, T., 2023. Automated deep-learning system in the assessment of MRI-visible prostate cancer: comparison of advanced zoomed diffusion-weighted imaging and conventional technique. Cancer Imaging, 23(1), p.6.
  28. Kaye, E.A., Aherne, E.A., Duzgol, C., Häggström, I., Kobler, E., Mazaheri, Y., Fung, M.M., Zhang, Z., Otazo, R., Vargas, H.A. and Akin, O., 2020. Accelerating prostate diffusion-weighted MRI using a guided denoising convolutional neural network: retrospective feasibility study. Radiology: Artificial Intelligence, 2(5), p.e200007.
  29. Abdelmaksoud, I.R., Shalaby, A., Mahmoud, A., Elmogy, M., Aboelfetouh, A., Abou El-Ghar, M., El-Melegy, M., Alghamdi, N.S. and El-Baz, A., 2021. Precise identification of prostate cancer from DWI using transfer learning. Sensors, 21(11), p.3664.
  30. Mao, L., Xu, L., Zhang, G., Sun, H. and Li, X., 2024. Exploring multi-b-value diffusion-weighted imaging for more accurate prostate segmentation and uncertainty estimation. Biomedical Signal Processing and Control, 89, p.105684.
  31. Liu, X., Sun, Z., Han, C., Cui, Y., Huang, J., Wang, X., Zhang, X. and Wang, X., 2021. Development and validation of the 3D U-Net algorithm for segmentation of pelvic lymph nodes on diffusion-weighted images. BMC Medical Imaging, 21, pp.1–13.
  32. Alhassan, A.M., 2024. Identification and Localization of Indolent and Aggressive Prostate Cancers Using Multilevel Bi-LSTM. Journal of Imaging Informatics in Medicine, pp.1–18.
  33. Jeong, J., Yeom, S.K., Choi, I.Y., Cha, S.H., Han, J.S., Lee, C.H., Sung, D.J., Choi, J.W., Bae, J.H., Choi, H. and Kim, I., 2024. Deep learning image reconstruction of diffusion-weighted imaging in evaluation of prostate cancer focusing on its clinical implications. Quantitative Imaging in Medicine and Surgery, 14(5), p.3432.
  34. Hu, L., Zhou, D.W., Zha, Y.F., Li, L., He, H., Xu, W.H., Qian, L., Zhang, Y.K., Fu, C.X., Hu, H. and Zhao, J.G., 2021. Synthesizing High-b-Value Diffusion–weighted Imaging of the Prostate Using Generative Adversarial Networks. Radiology: Artificial Intelligence, 3(5), p.e200237.
  35. Motamed, S., Gujrathi, I., Deniffel, D., Oentoro, A., Haider, M.A. and Khalvati, F., 2019. A transfer learning approach for automated segmentation of prostate whole gland and transition zone in diffusion weighted MRI. arXiv preprint arXiv:1909.09541.
  36. Chaddad, A., Kucharczyk, M.J., Desrosiers, C., Okuwobi, I.P., Katib, Y., Zhang, M., Rathore, S., Sargos, P. and Niazi, T., 2020. Deep radiomic analysis to predict gleason score in prostate cancer. IEEE Access, 8, pp.167767–167778.
  37. Butt, M.A., Kaleem, M.F., Bilal, M. and Hanif, M.S., 2024. Using multi-label ensemble CNN classifiers to mitigate labelling inconsistencies in patch-level Gleason grading. Plos one, 19(7), p.e0304847.
  38. Pellicer-Valero, O.J., Marenco Jimenez, J.L., Gonzalez-Perez, V., Casanova Ramon-Borja, J.L., Martín García, I., Barrios Benito, M., Pelechano Gomez, P., Rubio-Briones, J., Rupérez, M.J. and Martín-Guerrero, J.D., 2022. Deep learning for fully automatic detection, segmentation, and Gleason grade estimation of prostate cancer in multiparametric magnetic resonance images. Scientific reports, 12(1), p.2975.
  39. Yoshimura, T., Manabe, K. and Sugimori, H., 2023. Non-Invasive Estimation of Gleason Score by Semantic Segmentation and Regression Tasks Using a Three-Dimensional Convolutional Neural Network. Applied Sciences, 13(14), p.8028.
  40. Khalek, Yasser & Mohamed, Mohamed & Hassan, Rewan. (2023). Role of DWI/ADC in the Assessment of Prostate Cancer Aggressiveness and Its Correlation to Gleason Score. QJM: An International Journal of Medicine. 116. 10.1093/qjmed/hcad069.739.
  41. Li, Y., Huang, M., Zhang, Y., Chen, J., Xu, H., Wang, G. and Feng, W., 2020. Automated gleason grading and gleason pattern region segmentation based on deep learning for pathological images of prostate cancer. IEEE Access, 8, pp.117714–117725.
  42. Mary, S.A.L., Subramanian, S.S., Priyanka, G., Vijayakumar, T. and Alagumalai, S., 2024. Revolutionizing prostate cancer diagnosis: Unleashing the potential of an optimized deep belief network for accurate Gleason grading in histological images. International Journal of Intelligent Networks, 5, pp.241–254.
  43. Nai, Y.H., Cheong, D.L.H., Roy, S., Kok, T., Stephenson, M.C., Schaefferkoetter, J., Totman, J.J., Conti, M., Eriksson, L., Robins, E.G. and Wang, Z., 2023. Comparison of quantitative parameters and radiomic features as inputs into machine learning models to predict the Gleason score of prostate cancer lesions. Magnetic Resonance Imaging, 100, pp.64–72.
  44. Balaha, H.M., Shaban, A.O., El-Gendy, E.M. and Saafan, M.M., 2024. Prostate cancer grading framework based on deep transfer learning and Aquila optimizer. Neural Computing and Applications, 36(14), pp.7877–7902.
  45. Varan, M., AzimjonovJ., and Maçal, B., “Enhancing Prostate Cancer Classification by Leveraging Key Radiomics Features and Using the Fine-Tuned Linear SVM Algorithm,” in IEEE Access, vol. 11, pp. 88025–88039, 2023, doi: 10.1109/ACCESS.2023.3306515.
  46. Akinnuwesi, B.A., Olayanju, K.A., Aribisala, B.S., Fashoto, S.G., Mbunge, E., Okpeku, M. and Owate, P., 2023. Application of support vector machine algorithm for early differential diagnosis of prostate cancer. Data Science and Management, 6(1): 1–12.
  47. Fan, X., Xie, N., Chen, J., Li, T., Cao, R., Yu, H., He, M., Wang, Z., Wang, Y., Liu, H. and Wang, H., 2022. Multiparametric MRI and machine learning based radiomic models for preoperative prediction of multiple biological characteristics in prostate cancer. Frontiers in oncology, 12: 839621.
  48. Gaudiano, C., Mottola, M., Bianchi, L., Corcioni, B., Braccischi, L., Taninokuchi Tomassoni, M., Cattabriga, A., Cocozza, M.A., Giunchi, F., Schiavina, R. and Fanti, S., 2023. An apparent diffusion coefficient-based machine learning model can improve prostate cancer detection in the grey area of the prostate imaging reporting and data system category 3: a single-centre experience. Cancers, 15(13): 3438.
  49. Jin, J., Zhang, L., Leng, E., Metzger, G.J. and Koopmeiners, J.S., 2022. Bayesian spatial models for voxel-wise prostate cancer classification using multi-parametric magnetic resonance imaging data. Statistics in medicine, 41(3): 483–499.
  50. Chen, Z.L., Huang, Z.C., Lin, S.S., Li, Z.H., Dou, R.L., Xu, Y., Jiang, S.Q. and Li, M.Q., 2024. Clinical value of a radiomics model based on machine learning for the prediction of prostate cancer. Journal of International Medical Research, 52(10): 03000605241275338.
  51. Tang, J., Zheng, X., Wang, X., Mao, Q., Xie, L. and Wang, R., 2024. Computer-aided detection of prostate cancer in early stages using multi-parameter MRI: A promising approach for early diagnosis. Technology and Health Care, (Preprint) 1–9.
  52. Zandie, F., Salehi, M., Maziar, A., Bayatiani, M.R. and Paydar, R., 2024. Radiomics based Machine Learning Models for Classification of Prostate Cancer Grade Groups from Multi Parametric MRI Images. Journal of Medical Signals & Sensors, 14(12): 33.
  53. Garg, G. and Juneja, M., 2024. Possibilistic exponential spatial fuzzy clustering based cancer segmentation in multi-parametric prostate MRI. Multimedia Tools and Applications 1–30.
  54. Sethi, B.K., Singh, D., Rout, S.K. and Panda, S.K., 2023. Long Short-Term Memory-Deep Belief Network based Gene Expression Data Analysis for Prostate Cancer Detection and Classification. IEEE Access.
  55. Xu, Y., Klyuzhin, I., Harsini, S., Ortiz, A., Zhang, S., Bénard, F., Dodhia, R., Uribe, C.F., Rahmim, A. and Ferres, J.L., 2023. Automatic segmentation of prostate cancer metastases in PSMA PET/CT images using deep neural networks with weighted batch-wise dice loss. Computers in Biology and Medicine, 158: 106882.
  56. Liu, Z., Yang, C., Huang, J., Liu, S., Zhuo, Y. and Lu, X., 2021. Deep learning framework based on integration of S-Mask R-CNN and Inception-v3 for ultrasound image-aided diagnosis of prostate cancer. Future Generation Computer Systems, 114: 358–367.
  57. Rovera, G., Grimaldi, S., Oderda, M., Finessi, M., Giannini, V., Passera, R., Gontero, P. and Deandreis, D., 2023. Machine Learning CT-Based Automatic Nodal Segmentation and PET Semi-Quantification of Intraoperative 68Ga-PSMA-11 PET/CT Images in High-Risk Prostate Cancer: A Pilot Study. Diagnostics, 13(18): 3013.
  58. Hassan, M.R., Islam, M.F., Uddin, M.Z., Ghoshal, G., Hassan, M.M., Huda, S. and Fortino, G., 2022. Prostate cancer classification from ultrasound and MRI images using deep learning based Explainable Artificial Intelligence. Future Generation Computer Systems, 127: 462–472.
  59. Jiang, H., Imran, M., Muralidharan, P., Patel, A., Pensa, J., Liang, M., Benidir, T., Grajo, J.R., Joseph, J.P., Terry, R. and DiBianco, J.M., 2024. MicroSegNet: A deep learning approach for prostate segmentation on micro-ultrasound images. Computerized Medical Imaging and Graphics, 112: 102326.
  60. Singh, S.K., Sinha, A., Singh, H., Mahanti, A., Patel, A., Mahajan, S., Pandit, A.K. and Varadarajan, V., 2024. A novel deep learning-based technique for detecting prostate cancer in MRI images. Multimedia Tools and Applications, 83(5): 14173–14187.
  61. Yuan, Y., Ahn, E., Feng, D., Khadra, M. and Kim, J., 2022. Z-SSMNet: Zonal-aware Self-supervised Mesh Network for Prostate Cancer Detection and Diagnosis with Bi-parametric MRI. arXiv preprint arXiv:2212.05808.
  62. Abdelmaksoud, I.R., Shalaby, A., Mahmoud, A., Elmogy, M., Aboelfetouh, A., Abou El-Ghar, M., El-Melegy, M., Alghamdi, N.S. and El-Baz, A., 2021. Precise identification of prostate cancer from DWI using transfer learning. Sensors, 21(11): 3664.
  63. Korevaar, S., Tennakoon, R., Page, M., Brotchie, P., Thangarajah, J., Florescu, C., Sutherland, T., Kam, N.M. and Bab-Hadiashar, A., 2021. Incidental detection of prostate cancer with computed tomography scans. Scientific Reports, 11(1): 7956.
Language: English
Published on: Jan 26, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2026 Chaitali S. Prabhu, Anil B. Gavade, Priyanka A. Gavade, Rajendra B. Nerli, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Volume 19 (2026): Issue 1 (January 2026)