Have a personal or library account? Click to login
Enhancement of radial distribution network based on optimal location and sizing of photoVoltaic distributed generation using mountain gazelle optimizer and eel and grouper optimizer Cover

Enhancement of radial distribution network based on optimal location and sizing of photoVoltaic distributed generation using mountain gazelle optimizer and eel and grouper optimizer

Open Access
|Nov 2025

References

  1. Saber, A. Y., & Venayagamoorthy, G. K. (2010). Plug-in vehicles and renewable energy sources for cost and emission reductions. IEEE Transactions on Industrial electronics, 58(4), 1229–1238. DOI: 10.1109/TIE.2010.2047828
  2. Muttaqi, K. M., Le, A. D., Negnevitsky, M., & Ledwich, G. (2014). An algebraic approach for determination of DG parameters to support voltage profiles in radial distribution networks. IEEE Transactions on Smart Grid, 5(3), 1351–1360. DOI: 10.1109/TSG.2014.2303194
  3. Saha, S., & Mukherjee, V. (2016). Optimal placement and sizing of DGs in RDS using chaos embedded SOS algorithm. IET Generation, Transmission & Distribution, 10(14), 3671–3680. DOI: 10.1049/iet-gtd.2016.0151
  4. Ayalew, M., Khan, B., Giday, I., Mahela, O. P., Khosravy, M., Gupta, N., & Senjyu, T. (2022). Integration of renewable based distributed generation for distribution network expansion planning. Energies, 15(4), 1378. DOI: 10.3390/en15041378
  5. Stanelytė, D., & Radziukynas, V. (2022). Analysis of voltage and reactive power algorithms in low voltage networks. Energies, 15(5), 1843. DOI: 10.3390/en15051843
  6. Georgilakis, P. S., & Hatziargyriou, N. D. (2013). Optimal distributed generation placement in power distribution networks: models, methods, and future research. IEEE Transactions on power systems, 28(3), 3420–3428. DOI: 10.1109/TPWRS.2012.2237043
  7. Dorostkar-Ghamsari, M. R., Fotuhi-Firuzabad, M., Lehtonen, M., & Safdarian, A. (2015). Value of distribution network reconfiguration in presence of renewable energy resources. IEEE Transactions on Power Systems, 31(3), 1879–1888. DOI: 10.1109/TPWRS.2015.2457954
  8. Ali, A., Raisz, D., & Mahmoud, K. (2019). Optimal oversizing of utility-owned renewable DG inverter for voltage rise prevention in MV distribution systems. International Journal of Electrical Power & Energy Systems, 105, 500–513. DOI: 10.1016/j.ijepes.2018.08.040
  9. Ufa, R. A., Malkova, Y. Y., Rudnik, V. E., Andreev, M. V., & Borisov, V. A. (2022). A review on distributed generation impacts on electric power system. International journal of hydrogen energy, 47(47), 20347–20361. DOI: 10.1016/j.ijhydene.2022.04.142
  10. Viral, R., & Khatod, D. K. (2015). An analytical approach for sizing and siting of DGs in balanced radial distribution networks for loss minimization. International Journal of Electrical Power & Energy Systems, 67, 191–201. DOI: 10.1016/j.ijepes.2014.11.017
  11. Mahmoud, K., Yorino, N., & Ahmed, A. (2015). Optimal distributed generation allocation in distribution systems for loss minimization. IEEE Transactions on power systems, 31(2), 960–969. DOI: 10.1109/TPWRS.2015.2418333
  12. Kayal, P., Chanda, S., & Chanda, C. K. (2017). An analytical approach for allocation and sizing of distributed generations in radial distribution network. International Transactions on Electrical Energy Systems, 27(7), e2322. DOI: 10.1002/etep.2322
  13. El-Fergany, A. (2015). Optimal allocation of multi-type distributed generators using backtracking search optimization algorithm. International Journal of Electrical Power & Energy Systems, 64, 1197–1205. DOI: 10.1016/j.ijepes.2014.09.020
  14. Abou El-Ela, A. A., El-Sehiemy, R. A., & Abbas, A. S. (2018). Optimal placement and sizing of distributed generation and capacitor banks in distribution systems using water cycle algorithm. IEEE Systems Journal, 12(4), 3629–3636. DOI: 10.1109/JSYST.2018.2796847
  15. Pham, T. D., Nguyen, T. T., & Dinh, B. H. (2021). Find optimal capacity and location of distributed generation units in radial distribution networks by using enhanced coyote optimization algorithm. Neural Computing and Applications, 33(9), 4343–4371. DOI: 10.1007/s00521-020-05239-1
  16. Sultana, S., & Roy, P. K. (2014). Multi-objective quasi-oppositional teaching learning based optimization for optimal location of distributed generator in radial distribution systems. International Journal of Electrical Power & Energy Systems, 63, 534–545. DOI: 10.1016/j.ijepes.2014.06.031
  17. Nagaballi, S., & Kale, V. S. (2020). Pareto optimality and game theory approach for optimal deployment of DG in radial distribution system to improve techno-economic benefits. Applied Soft Computing, 92, 106234. DOI: 10.1016/j.asoc.2020.106234
  18. Sharma, S., Bhattacharjee, S., & Bhattacharya, A. (2016). Quasi-Oppositional Swine Influenza Model Based Optimization with Quarantine for optimal allocation of DG in radial distribution network. International Journal of Electrical Power & Energy Systems, 74, 348–373. DOI: 10.1016/j.ijepes.2015.07.034
  19. Imran, A. M., Kowsalya, M., & Kothari, D. P. (2014). A novel integration technique for optimal network reconfiguration and distributed generation placement in power distribution networks. International Journal of Electrical Power & Energy Systems, 63, 461–472. DOI: 10.1016/j.ijepes.2014.06.011
  20. Rao, R. S., Ravindra, K., Satish, K., & Narasimham, S. V. L. (2012). Power loss minimization in distribution system using network reconfiguration in the presence of distributed generation. IEEE transactions on power systems, 28(1), 317–325. DOI: 10.1109/TPWRS.2012.2197227
  21. Kowsalya, M. (2014). Optimal size and siting of multiple distributed generators in distribution system using bacterial foraging optimization. Swarm and Evolutionary computation, 15, 58–65. DOI: 10.1016/j.swevo.2013.12.001
  22. Balu, K., & Mukherjee, V. (2021). Optimal siting and sizing of distributed generation in radial distribution system using a novel student psychology-based optimization algorithm. Neural Computing and Applications, 33(22), 15639–15667. DOI: 10.1007/s00521-021-06185-2
  23. Khasanov, M., Kamel, S., Rahmann, C., Hasanien, H. M., & Al-Durra, A. (2021). Optimal distributed generation and battery energy storage units integration in distribution systems considering power generation uncertainty. IET Generation, Transmission & Distribution, 15(24), 3400–3422. DOI: 10.1049/gtd2.12230
  24. Uniyal, A., & Sarangi, S. (2021). Optimal network reconfiguration and DG allocation using adaptive modified whale optimization algorithm considering probabilistic load flow. Electric Power Systems Research, 192, 106909. DOI: 10.1016/j.epsr.2020.106909
  25. El-maksoud, A., Ahmed, A. H., & Hasan, S. (2023). Simultaneous Optimal Network Reconfiguration and Allocation of Four Different Distributed Generation Types in Radial Distribution Networks Using a Graph Theory-Based MPSO Algorithm. International Journal of Intelligent Engineering & Systems, 16(2). DOI: 10.22266/ijies2023.0430.24
  26. Ehsan, A., & Yang, Q. (2018). Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques. Applied Energy, 210, 44–59. DOI: 10.1016/j.apenergy.2017.10.106
  27. Ameli, A., Bahrami, S., Khazaeli, F., & Haghifam, M. R. (2014). A multiobjective particle swarm optimization for sizing and placement of DGs from DG owner’s and distribution company’s viewpoints. IEEE Transactions on power delivery, 29(4), 1831–1840. DOI: 10.1109/TPWRD.2014.2300845
  28. Pon Ragothama Priya, P., Baskar, S., Tamil Selvi, S., & Babulal, C. K. (2023). Optimal allocation of distributed generation using evolutionary multi-objective optimization. Journal of Electrical Engineering & Technology, 18(2), 869–886. DOI: 10.1007/s42835-022-01269-y
  29. Settoul, S., Chenni, R., Zellagui, M., & Nouri, H. (2021). Optimal integration of renewable distributed generation using the whale optimization algorithm for techno-economic analysis. Lecture Notes in Electrical Engineering, 682, 513–532. DOI: 10.1007/978-981-15-6403-1_35
  30. Selim, A., Kamel, S., Jurado, F., Lopes, J. A. P., & Matos, M. (2021). Optimal setting of PV and battery energy storage in radial distribution systems using multi-objective criteria with fuzzy logic decision-making. IET generation, transmission & distribution, 15(1), 135–148. DOI: 10.1049/gtd2.12019
  31. Adepoju, G. A., Salimon, S. A., Adebayo, I. G., & Adewuyi, O. B. (2024). Impact of DSTATCOM penetration level on technical benefits in radial distribution network. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 7, 100413. DOI: 10.1016/j.prime.2023.100413
  32. Gao, H., Diao, R., Zhong, Y., Zeng, R., Wu, Q., & Jin, S. (2024). Optimal allocation of distributed generation in active distribution power network considering HELM-based stability index. International Journal of Electrical Power & Energy Systems, 155, 109508. DOI: 10.1016/j.ijepes.2023.109508
  33. Adetunji, K. E., Hofsajer, I. W., Abu-Mahfouz, A. M., & Cheng, L. (2020). A review of metaheuristic techniques for optimal integration of electrical units in distribution networks. IEEE Access, 9, 5046–5068. DOI: 10.1109/ACCESS.2020.3048438
  34. Belbachir, N., Kamel, S., Hashim, F. A., Yu, J., Zeinoddini-Meymand, H., & Sabbeh, S. F. (2023). Optimizing the hybrid PVDG and DSTATCOM integration in electrical distribution systems based on a modified homonuclear molecules optimization algorithm. IET Renewable Power Generation, 17(12), 3075–3096. DOI: 10.1049/rpg2.12826
  35. Abdollahzadeh, B., Gharehchopogh, F. S., Khodadadi, N., & Mirjalili, S. (2022). Mountain gazelle optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems. Advances in Engineering Software, 174, 103282. DOI: 10.1016/j.advengsoft.2022.103282
  36. Abdelsattar, M., Mesalam, A., Fawzi, A., & Hamdan, I. (2024). Mountain gazelle optimizer for standalone hybrid power system design incorporating a type of incentive-based strategies. Neural Computing and Applications, 36(12), 6839–6853. DOI: 10.1007/s00521-024-09433-3
  37. Mohammadzadeh, A., & Mirjalili, S. (2024). Eel and grouper optimizer: a nature-inspired optimization algorithm. Cluster Computing, 1–42. DOI: 10.1007/s10586-024-04545-w
  38. Kyrou, G., Charilogis, V., & Tsoulos, I. G. (2024). Refining the Eel and Grouper Optimizer with Intelligent Modifications for Global Optimization. Computation, 12(10). DOI: 10.3390/computation12100205
  39. Aman, M. M., Jasmon, G. B., Bakar, A. H. A., & Mokhlis, H. (2014). A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm. Energy, 66, 202–215. DOI: 10.1016/j.energy.2013.12.037
Language: English
Submitted on: Jun 12, 2025
|
Published on: Nov 26, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Ghassan Abdullah Salman, Layth Tawfeeq Al-Bahrani, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.