References
- Yang, F., Liu, Y., & Wei, H. (2020). Image-Based Human Protein Subcellular Location Prediction Using Local Tetra Patterns Descriptor. In The 8th International Conference on Computer Engineering and Networks (CENet2018) (pp. 463–473). Springer International Publishing.
- Song, T., Li, H., Meng, F., Wu, Q., & Luo, B. (2015). Exploring space–frequency co-occurrences via local quantized patterns for texture representation. Pattern Recognition, 48(8), 2621–2632.
- Prabha, B., Shanker, N. R., Priya, M., & Ganesh, E. (2022, May). A novel descriptive approach: local tetra patterns (LTrPs) for face recognition. In ICCCE 2021: Proceedings of the 4th International Conference on Communications and Cyber Physical Engineering (pp. 967–978). Singapore: Springer Nature Singapore.
- Li, Z., Song, J., Ma, Y., Yu, Y., He, X., Guo, Y., ... & Dong, H. (2023). Identification of aged-rice adulteration based on near-infrared spectroscopy combined with partial least squares regression and characteristic wavelength variables. Food Chemistry: X, 17, 100539.
- Ringle, C. M., Sarstedt, M., Sinkovics, N., & Sinkovics, R. R. (2023). A perspective on using partial least squares structural equation modelling in data articles. Data in Brief, 48, 109074.
- Valizadeh, G., & Babapour Mofrad, F. (2022). A comprehensive survey on two and three-dimensional Fourier shape descriptors: biomedical applications. Archives of Computational Methods in Engineering, 29(7), 4643–4681.
- Hajipour, S., Farbood, Y., Gharib-Naseri, M. K., Goudarzi, G., Rashno, M., Maleki, H., ... & Sarkaki, A. (2020). Exposure to ambient dusty particulate matter impairs spatial memory and hippocampal LTP by increasing brain inflammation and oxidative stress in rats. Life sciences, 242, 117210.
- Breiding, P., Sottile, F., & Woodcock, J. (2022). Euclidean distance degree and mixed volume. Foundations of Computational Mathematics, 22(6), 1743–1765.
- Ojala, J., Vanhanen, J., Harno, H., Lioumis, P., Vaalto, S., Kaunisto, M. A., ... & Kalso, E. (2022). A randomized, sham-controlled trial of repetitive transcranial magnetic stimulation targeting M1 and S2 in central poststroke pain: a pilot trial. Neuromodulation: Technology at the Neural Interface, 25(4), 538–548.
- Yang, F., Sun, Q., Jin, H., & Zhou, Z. (2020). Superpixel segmentation with fully convolutional networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 13964–13973).
- Li, Z., & Chen, J. (2015). Superpixel segmentation using linear spectral clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1356–1363).
- Penza, V., Ortiz, J., Mattos, L. S., Forgione, A., & De Momi, E. (2016). Dense soft tissue 3D reconstruction refined with super-pixel segmentation for robotic abdominal surgery. International journal of computer assisted radiology and surgery, 11, 197–206.
- Bharati, S., Ahmad, M. O., & Swamy, M. N. S. (2024, August). A Novel Super-pixel Grid Mixing-Based Augmentation with a Feature Fusion of Convolutional Networks for Breast Ultrasound Image Segmentation. In 2024 IEEE 67th International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 970–974). IEEE.
- Zhao, Z., Li, J., Wen, J., He, Y., & Sun, Z. (2023). Effect of moxibustion on inflammatory cytokines for low back pain: a systematic review, meta-analysis and meta-regression. Therapeutics and Clinical Risk Management, 811–827.
- Dheepak, G., & Vaishali, D. (2024). Brain tumor classification: a novel approach integrating GLCM, LBP and composite features. Frontiers in Oncology, 13, 1248452.
- Oberoi, A., Bakshi, V., Sharma, R., & Singh, M. (2013). A framework for medical image retrieval using local tetra patterns. International Journal of Engineering and Technology, 5(1), 27–36.
- Qiu, Z., Gong, T., Liang, Z., Chen, T., Cong, R., Bai, H., & Zhao, Y. (2024). Perception-oriented UAV Image Dehazing Based on Super-Pixel Scene Prior. IEEE Transactions on Geoscience and Remote Sensing.
- Fu, Y., Wang, W., Zhu, L., Ye, X., & Yue, H. (2024). Weakly supervised semantic segmentation based on superpixel affinity. Journal of Visual Communication and Image Representation, 101, 104168.
- Ge, J., Zhang, Z., Phan, M. H., Zhang, B., Liu, A., & Zhao, Y. (2024). ESA: Annotation-Efficient Active Learning for Semantic Segmentation. arXiv preprint arXiv:2408.13491.
- Chang, M., Ji, L., & Zhu, J. (2024). Multi-scale LBP fusion with the contours from deep CellNNs for texture classification. Expert Systems with Applications, 238, 122100.
- James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023). Linear regression. In An introduction to statistical learning: With applications in python (pp. 69–134). Cham: Springer International Publishing.
- Seo, J., Kim, S., Jalalvand, A., Conlin, R., Rothstein, A., Abbate, J., ... & Kolemen, E. (2024). Avoiding fusion plasma tearing instability with deep reinforcement learning. Nature, 626(8000), 746–751.
- Basu, S., Singhal, S., & Singh, D. (2024). A systematic literature review on multimodal medical image fusion. Multimedia tools and applications, 83(6), 15845–15913.
- Rimner, A., Ruffini, E., Cilento, V., Goren, E., Ahmad, U., Appel, S., ... & Asamura, H. (2023). The International Association for the Study of Lung Cancer thymic epithelial tumors staging project: an overview of the central database informing revision of the forthcoming (ninth) edition of the TNM classification of malignant tumors. Journal of Thoracic Oncology.
- Keerthana, D., Venugopal, V., Nath, M. K., & Mishra, M. (2023). Hybrid convolutional neural networks with SVM classifier for classification of skin cancer. Biomedical Engineering Advances, 5, 100069.
- Narayan, V., Mall, P. K., Awasthi, S., Srivastava, S., & Gupta, A. (2023, January). FuzzyNet: Medical image classification based on GLCM texture feature. In 2023 International Conference on Artificial Intelligence and Smart Communication (AISC) (pp. 769–773). IEEE.
- Gao, H., Li, Z., Zhou, L., Li, X., & Wang, Q. (2024). GLRM: Geometric Layout-Based Resource Management Method on Multiple Field Programmable Gate Array Systems. Electronics, 13(10), 1821.
- Rastogi, D., Johri, P., Donelli, M., Kadry, S., Khan, A. A., Espa, G., ... & Kim, J. (2025). Deep learning-integrated MRI brain tumor analysis: feature extraction, segmentation, and Survival Prediction using Replicator and volumetric networks. Scientific Reports, 15(1), 1437.
- Mishra, A., Chaturvedi, R. P., Sharma, H., Kumar, P., Asthana, S., & Parashar, M. (2024, August). Brain Tumor Detection using Optimized Stochastic Gradient Descent Function. In 2024 International Conference on Electrical Electronics and Computing Technologies (ICEECT) (Vol. 1, pp. 1–6). IEEE.
- Mishra, A., Gupta, P., & Tewari, P. (2022). Global U-net with amalgamation of inception model and improved kernel variation for MRI brain image segmentation. Multimedia Tools and Applications, 81(16), 23339–23354.
- Akinci D'Antonoli, T., Berger, L. K., Indrakanti, A. K., Vishwanathan, N., Weiss, J., Jung, M., ... & Wasserthal, J. (2025). Totalsegmentator mri: Robust sequence-independent segmentation of multiple anatomic structures in mri. Radiology, 314(2), e241613.
- Yunzhi, P., Mingjun, Z., Yuqing, C., Lin, H., Weiqing, H., Wenjian, T., ... & Xudong, C. (2025). Spatial patterns of individual morphological deformation in schizophrenia: Putative cortical compensatory of unaffected sibling. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 138, 111329.