References
- J. Wang, J. Dai, K. S. Li, J. Wang, M. Wei, and M. Pang, “Cost-effective printing of 3D objects with self-supporting property,” Visual Computer, vol. 35, no. 5, pp. 639–651, May 2019, doi: 10.1007/s00371-018-1493-y.
- L. Di Angelo, P. Di Stefano, and A. Marzola, “Surface quality prediction in FDM additive manufacturing,” International Journal of Advanced Manufacturing Technology, vol. 93, no. 9–12, pp. 3655–3662, Dec. 2017, doi: 10.1007/s00170-017-0763-6.
- M. A. Matos, A. M. A. C. Rocha, L. A. Costa, and A. I. Pereira, “A Multi-objective Approach to Solve the Build Orientation Problem in Additive Manufacturing,” in Computational Science and Its Applications – ICCSA 2019, Springer International Publishing, 2019, pp. 261–276.
- M. A. Matos, A. M. A. C. Rocha, and A. I. Pereira, “On optimizing the build orientation problem using genetic algorithm,” in AIP Conference Proceedings, 2019.
- Li, Q. Hou, M. Zhao, and Z. Wu, “Reliable Task Planning of Networked Devices as a Multi-Objective Problem Using NSGA-II and Reinforcement Learning,” IEEE Access, vol. 10, pp. 6684–6695, 2022, doi: 10.1109/ACCESS.2022.3141912.
- C. L. Tseng, C. S. Cheng, and Y. H. Shen, “A Reinforcement Learning-Based Multi-Objective Bat Algorithm Applied to Edge Computing Task-Offloading Decision Making,” Applied Sciences (Switzerland), vol. 14, no. 12, Jun. 2024, doi: 10.3390/app14125088.
- J. F. P. Lovo, C. A. Fortulan, and M. M. da Silva, “Optimal deposition orientation in fused deposition modelling for maximizing the strength of three-dimensional printed truss-like structures,” Proc Inst Mech Eng B J Eng Manuf, vol. 233, no. 4, pp. 1206–1215, May 2018.
- M. A. Matos, A. M. A. C. Rocha, and L. A. Costa, “Many-objective optimization of build part orientation in additive manufacturing,” International Journal of Advanced Manufacturing Technology, vol. 112, no. 3–4, pp. 747–762, Jan. 2021, doi: 10.1007/s00170-020-06369-5.
- X. J. Chen, J. L. Hu, Q. L. Zhou, C. Politis, and Y. Sun, “An automatic optimization method for minimizing supporting structures in additive manufacturing,” Adv Manuf, vol. 8, no. 1, pp. 49–58, Mar. 2020, doi: 10.1007/s40436-019-00277-y.
- V. Yannibelli, E. Pacini, D. Monge, C. Mateos, and G. Rodriguez, “A Comparative Analysis of NSGA-II and NSGA-III for Autoscaling Parameter Sweep Experiments in the Cloud,” Sci Program, vol. 2020, 2020, doi: 10.1155/2020/4653204.
- R. Parayoga, A. Maria, and S. Asih, “Empirical study of MOPSO and NSGA II comparison inmulti-objective location routing problem incorporating the service level of delivery.”
- B. Jang, M. Kim, G. Harerimana, and J. W. Kim, “Q-Learning Algorithms: A Comprehensive Classification and Applications,” IEEE Access, vol. 7, pp. 133653–133667, 2019, doi: 10.1109/ACCESS.2019.2941229.
- A. I. Portoacă, R. G. Ripeanu, A. Diniță, and M. Tănase, “Optimization of 3D Printing Parameters for Enhanced Surface Quality and Wear Resistance,” Polymers (Basel), vol. 15, no. 16, Aug. 2023, doi: 10.3390/polym15163419.
- H. Ishibuchi, R. Imada, Y. Setoguchi, and Y. Nojima, “Performance Comparison of NSGA-II and NSGA-III on Various Many-Objective Test Problems,” 2016.
- J. Hao, X. Yang, C. Wang, R. Tu, and T. Zhang, “An Improved NSGA-II Algorithm Based on Adaptive Weighting and Searching Strategy,” Applied Sciences (Switzerland), vol. 12, no. 22, Nov. 2022, doi: 10.3390/app122211573.
- 2016 IEEE Congress on Evolutionary Computation (CEC). Institute of Electrical and Electronics Engineers (IEEE), 2016.
- D. Goh, S. L. Sing, and W. Y. Yeong, “A review on machine learning in 3D printing: applications, potential, and challenges,” Artif Intell Rev, vol. 54, no. 1, pp. 63–94, Jan. 2021, doi: 10.1007/s10462-020-09876-9.
- J. Du, R. Liu, D. Cheng, X. Wang, T. Zhang, and F. Yu, “Enhancing NSGA-II Algorithm through Hybrid Strategy for Optimizing Maize Water and Fertilizer Irrigation Simulation,” Symmetry (Basel), vol. 16, no. 8, Aug. 2024, doi: 10.3390/sym16081062.
- X. Wen et al., “Effective Improved NSGA-II Algorithm for Multi-Objective Integrated Process Planning and Scheduling,” Mathematics, vol. 11, no. 16, p. 3523, Aug. 2023, doi: 10.3390/math11163523.
- R. Wu, R. Wang, J. Hao, Q. Wu, P. Wang, and D. Niyato, “Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II,” Jul. 2024, [Online]. Available:
http://arxiv.org/abs/2407.13113 - R. Chen, B. Wu, H. Wang, H. Tong, and F. Yan, “A Q-Learning based NSGA-II for dynamic flexible job shop scheduling with limited transportation resources.” [Online]. Available:
https://ssrn.com/abstract=4822936 - J. Du, R. Liu, D. Cheng, X. Wang, T. Zhang, and F. Yu, “Enhancing NSGA-II Algorithm through Hybrid Strategy for Optimizing Maize Water and Fertilizer Irrigation Simulation,” Symmetry (Basel), vol. 16, no. 8, Aug. 2024, doi: 10.3390/sym16081062.
- J. Hao, X. Yang, C. Wang, R. Tu, and T. Zhang, “An Improved NSGA-II Algorithm Based on Adaptive Weighting and Searching Strategy,” Applied Sciences (Switzerland), vol. 12, no. 22, Nov. 2022, doi: 10.3390/app122211573.