Figure 1:
![NSGA-II flowchart [13]. NSGA-II, non-dominated sorting genetic algorithm II.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/678caf4e082aa65dea3d247b/j_ijssis-2025-0035_fig_001.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251028%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251028T020150Z&X-Amz-Expires=3600&X-Amz-Signature=d6686db1b9419f2800c7cf5c6a7ce43cde2d008f9bfd8f4e021c6adf6007c191&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 2:
![Flowchart of the Q-learning and NSGA-II hybrid combination [21]. NSGA-II, non-dominated sorting genetic algorithm II.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/678caf4e082aa65dea3d247b/j_ijssis-2025-0035_fig_002.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251028%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251028T020150Z&X-Amz-Expires=3600&X-Amz-Signature=fc590a53903bef7d9e9d084ad1204945540dae12b1e38fb621e41a8b06bbe029&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 3:

Figure 4:

Figure 5:
![Stair-stepping effect due to layer stacking on an inclined surface [8].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/678caf4e082aa65dea3d247b/j_ijssis-2025-0035_fig_005.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251028%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251028T020150Z&X-Amz-Expires=3600&X-Amz-Signature=3e5a5b4f65023f449af56b8a591a37eb77eb6dae0916271fc744abb91fa93422&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:

Figure 11:

Figure 12:

Figure 13:

Figure 14:

Figure 15:

Figure 16:

Dataset of 3D model
| No. | 3D model | Dimensions (cm) | Facet | Support area | Print time | Surface roughness | ||
|---|---|---|---|---|---|---|---|---|
| X | Y | Z | ||||||
| 1 | bunny | 0 | 0 | 0 | 292 | 2,168.3 | 1,023 | 101 |
Comparison of NSGAII with NSGAII-Q learning
| 3D model | Objective | NSGA_II | NSGAII-Q learning | Efficiency improvement |
|---|---|---|---|---|
| Bunny | Material support | 212,970 | 208,570 | 2.1 |
| Print time | 1,1847 | 11,393 | 3.8 | |
| Surface roughness | 1.08 | 1.06 | 1.9 |
