Agarwal, A., Xie, B., Vovsha, I., Rambow, O., & Passonneau, R. (2011). Sentiment Analysis of Twitter Data. Association for Computational Linguistics. http://www.webconfs.com/stop-words.php
Anderson, J. R. (2004). Agricultural Extension: Good Intentions and Hard Realities. The World Bank Research Observer, 19(1), 41–60. DOI: 10.1093/wbro/lkh013
Ataharul Chowdhury, H. H. O. (2013). Social media for Enhancing Innovation in Agri-food and Rural Development: Current Dynamics in Ontario, Canada. Journal of Rural and Community Development, 97–119.
Binswanger, H. P. (1980). Attitudes Toward Risk: Experimental Measurement in Rural India. American Journal of Agricultural Economics, 62(3), 395–407. DOI: 10.2307/1240194
Borrero, J. D., & Zabalo, A. (2021). Identification and Analysis of Strawberries’ Consumer Opinions on Twitter for Marketing Purposes. Agronomy, 11(4), 809. DOI: 10.3390/agronomy11040809
Bournaris, T. (2020). Evaluation of e-Government Web Portals: The Case of Agricultural e-Government Services in Greece. Agronomy, 10(7), 932. DOI: 10.3390/agronomy10070932
Das V., J., Sharma, S., & Kaushik, A. (2019). Views of Irish Farmers on Smart Farming Technologies: An Observational Study. AgriEngineering, 1(2), 164–187. DOI: 10.3390/agriengineering1020013
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. DOI: 10.2307/249008
Dr. S. Vijayarani1, Ms. J. I. Ms. N. (2014). Preprocessing Techniques for Text Mining - An Overview., International Journal of Computer Science & Communication Networks.
Drus, Z., & Khalid, H. (2019). Sentiment Analysis in Social Media and Its Application: Systematic Literature Review. Procedia Computer Science, 161, 707–714. DOI: 10.1016/j.procs.2019.11.174
Dwivedi, Y. K., Ismagilova, E., Hughes, D. L., Carlson, J., Filieri, R., Jacobson, J., Jain, V., Karjaluoto, H., Kefi, H., Krishen, A. S., Kumar, V., Rahman, M. M., Raman, R., Rauschnabel, P. A., Rowley, J., Salo, J., Tran, G. A., & Wang, Y. (2021). Setting the future of digital and social media marketing research: Perspectives and research propositions. International Journal of Information Management, 59, 102168. DOI: 10.1016/j.ijinfomgt.2020.102168
Elly, T., & Epafra Silayo, E. (2013). Agricultural information needs and sources of the rural farmers in Tanzania. Library Review, 62(8/9), 547–566. DOI: 10.1108/LR-01-2013-0009
Eweoya, I., Okuboyejo, S. R., Odetunmibi, O. A., & Odusote, B. O. (2021). An empirical investigation of acceptance, adoption and the use of E-agriculture in Nigeria. Heliyon, 7(7), e07588. DOI: 10.1016/j.heliyon.2021.e07588
Ginige, T., Richards, D., Ginige, A., & Hitchens, M. (2020). Design for Empowerment: Empowering Sri Lankan Farmers through Mobile-based Information System. Communications of the Association for Information Systems, 444–483. DOI: 10.17705/1CAIS.04619
Gongane, V. U., Munot, M. V., & Anuse, A. D. (2022). Detection and moderation of detrimental content on social media platforms: current status and future directions. Social Network Analysis and Mining, 12(1), 129. DOI: 10.1007/s13278-022-00951-3
Goyal, R. (2021). Evaluation of rule-based, CountVectorizer, and Word2Vec machine learning models for tweet analysis to improve disaster relief. 2021 IEEE Global Humanitarian Technology Conference (GHTC), 16–19. DOI: 10.1109/GHTC53159.2021.9612486
Gupta, M., Abdelsalam, M., Khorsandroo, S., & Mittal, S. (2020). Security and Privacy in Smart Farming: Challenges and Opportunities. IEEE Access, 8, 34564–34584. DOI: 10.1109/ACCESS.2020.2975142
Hoi, S. C. H., Sahoo, D., Lu, J., & Zhao, P. (2021). Online learning: A comprehensive survey. Neurocomputing, 459, 249–289. DOI: 10.1016/j.neucom.2021.04.112
Iwuchukwu, J. C., Eke, O. G., & Nwobodo, C. E. (2019). Perception of Extension Personnel on Suitability and Benefits of Using Social Media in Communicating Agricultural Information in Enugu State, Nigeria. Journal of Agricultural Extension, 23(3), 172. DOI: 10.4314/jae.v23i3.15
Jansen, B. J., Zhang, M., Sobel, K., & Chowdury, A. (2009). Twitter power: Tweets as electronic word of mouth. Journal of the American Society for Information Science and Technology, 60(11), 2169–2188. DOI: 10.1002/asi.21149
Javaid, M., Haleem, A., Khan, I. H., & Suman, R. (2023). Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Advanced Agrochem, 2(1), 15–30. DOI: 10.1016/j.aac.2022.10.001
Kaur, G., Kaushik, A., & Sharma, S. (2019). Cooking Is Creating Emotion: A Study on Hinglish Sentiments of Youtube Cookery Channels Using Semi-Supervised Approach. Big Data and Cognitive Computing, 3(3), 37. DOI: 10.3390/bdcc3030037
Kizgin, H., Dey, B. L., Dwivedi, Y. K., Hughes, L., Jamal, A., Jones, P., Kronemann, B., Laroche, M., Peñaloza, L., Richard, M.-O., Rana, N. P., Romer, R., Tamilmani, K., & Williams, M. D. (2020). The impact of social media on consumer acculturation: Current challenges, opportunities, and an agenda for research and practice. International Journal of Information Management, 51, 102026. DOI: 10.1016/j.ijinfomgt.2019.10.011
Klerkx, L., Jakku, E., & Labarthe, P. (2019). A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS: Wageningen Journal of Life Sciences, 90–91(1), 1–16. DOI: 10.1016/j.njas.2019.100315
Kumar, N., Qiu, L., & Kumar, S. (2022). A Hashtag Is Worth a Thousand Words: An Empirical Investigation of Social Media Strategies in Trademarking Hashtags. Information Systems Research, 33(4), 1403–1427. DOI: 10.1287/isre.2022.1107
Mangla, S. K., Luthra, S., Rich, N., Kumar, D., Rana, N. P., & Dwivedi, Y. K. (2018). Enablers to implement sustainable initiatives in agri-food supply chains. International Journal of Production Economics, 203, 379–393. DOI: 10.1016/j.ijpe.2018.07.012
Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093–1113. DOI: 10.1016/j.asej.2014.04.011
Miller, N. J., Griffin, T. W., Ciampitti, I. A., & Sharda, A. (2019). Farm adoption of embodied knowledge and information intensive precision agriculture technology bundles. Precision Agriculture, 20(2), 348–361. DOI: 10.1007/s11119-018-9611-4
Mills, J., Reed, M., Skaalsveen, K., & Ingram, J. (2019). The use of Twitter for knowledge exchange on sustainable soil management. Soil Use and Management, 35(1), 195–203. DOI: 10.1111/sum.12485
Mwangi, M., & Kariuki, S. (2015). Factors Determining Adoption of New Agricultural Technology by Smallholder Farmers in Developing Countries. In Journal of Economics and Sustainable Development www.iiste.orgISSN (Vol. 6, Issue 5). Online. www.iiste.org
Naveen Kumar, L. Q. S. K. (2022). A Hashtag is Worth a Thousand Words: An Empirical Investigation of Social Media Strategies in Trademarking Hashtags. Forthcoming in Information Systems Research.
Neogi, A. S., Garg, K. A., Mishra, R. K., & Dwivedi, Y. K. (2021). Sentiment analysis and classification of Indian farmers’ protest using twitter data. International Journal of Information Management Data Insights, 1(2), 100019. DOI: 10.1016/j.jjimei.2021.100019
Ni, R., & Cao, H. (2020). Sentiment Analysis based on GloVe and LSTM-GRU. 2020 39th Chinese Control Conference (CCC), 7492–7497. DOI: 10.23919/CCC50068.2020.9188578
Nkundabanyanga, S. K., Mvura, P., Nyamuyonjo, D., Opiso, J., & Nakabuye, Z. (2017). Tax compliance in a developing country. Journal of Economic Studies, 44(6), 931–957. DOI: 10.1108/JES-03-2016-0061
Ofori, M., & El-Gayar, O. (2021). Drivers and challenges of precision agriculture: a social media perspective. Precision Agriculture, 22(3), 1019–1044. DOI: 10.1007/s11119-020-09760-0
Orçun Kaya, A., Jan Schildbach, E., & Research Management Stefan Schneider, D. (2019). EU Monitor Global financial markets Artificial intelligence in banking. www.dbresearch.com
Qaiser, S., & Ali, R. (2018). Text Mining: Use of TF-IDF to Examine the Relevance of Words to Documents. International Journal of Computer Applications, 181(1), 25–29. DOI: 10.5120/ijca2018917395
Rai, S. K., Singh, J. P., Kumar, K., & Alhamzi, K. H. M. (2024). An Empirical Exploration of E-Agriculture System Acceptance, Satisfaction, and Usage. International Journal of Electronic Government Research, 20(1), 1–26. DOI: 10.4018/IJEGR.344814
Rashid, M. M., Islam, R., Quamruzzaman, M., Yeasmin, M., & Azad, M. J. (2016). Impact of E-Agriculture on Farmer’s Livelihood in Bangladesh. J. Agric. & Environ. Sci, 16(5), 976–983. DOI: 10.5829/idosi.aejaes.2016.16.5.12915
Robertson, S. (2004). Understanding inverse document frequency: on theoretical arguments for IDF. Journal of Documentation, 60(5), 503–520. DOI: 10.1108/00220410410560582
Santur, Y. (2019). Sentiment Analysis Based on Gated Recurrent Unit. 2019 International Artificial Intelligence and Data Processing Symposium (IDAP), 1–5. DOI: 10.1109/IDAP.2019.8875985
Srinivas, A. C. M. V., Satyanarayana, Ch., Divakar, Ch., & Sirisha, K. P. (2021). Sentiment Analysis using Neural Network and LSTM. IOP Conference Series: Materials Science and Engineering, 1074(1), 012007. DOI: 10.1088/1757-899X/1074/1/012007
Thongkhao, K., Ruang-on, S., & Tina, F. W. (2024). Development of an IoT-Based Smart Watering System for Monitoring and Increasing Soil Moisture Content in “Tabtim Siam” Pomelo Garden in Pak Phanang District, Nakhon Si Thammarat Province, Southern Thailand. International Journal on Smart Sensing and Intelligent Systems, 17(1). DOI: 10.2478/ijssis-2024-0030
Toledo, C. A., Villegas, A. M., & Muñoz, L. A. (2022). Model based on the principles of smart agriculture to mitigate the effects of frost and improve agricultural production in the Cundiboyacense plateau. International Journal on Smart Sensing and Intelligent Systems, 15(1). DOI: 10.2478/ijssis-2022-0006
Tom Phillipsa, L. K. M. M. (2018). An investigation of social media’s roles in knowledge exchange by farmers. Theme 1 – Learning and Knowledge Systems, Education, Extension and Advisory Services.
Tyagi, A., Reddy, A. A., Singh, J., & Chowdhury, S. R. (2011). A Low Cost Portable Temperature-Moisture Sensing Unit with Artificial Neural Network Based Signal Conditioning For Smart Irrigation Applications. International Journal on Smart Sensing and Intelligent Systems, 4(1), 94–111. DOI: 10.21307/ijssis-2017-428
Usop, E. S., Isnanto, R. R., & Kusumaningrum, R. (2017). Part of speech features for sentiment classification based on Latent Dirichlet Allocation. 2017 4th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), 31–34. DOI: 10.1109/ICITACEE.2017.8257670
Visconti, P., Ferri, R., Pucciarelli, M., & Venere, E. (2016). Development and Characterization of a Solarbased Energy Harvesting and Power Management System for a WSN Node Applied to Optimized Goods Transport and Storage. International Journal on Smart Sensing and Intelligent Systems, 9(4), 1637–1667. DOI: 10.21307/ijssis-2017-933
Yao, T., Zhai, Z., & Gao, B. (2020). Text Classification Model Based on fastText. 2020 IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS), 154–157. DOI: 10.1109/ICAIIS49377.2020.9194939
Yudhana, A., Cahyo, A. D., Sabila, L. Y., Subrata, A. C., & Mufandi, I. (2023). Spatial distribution of soil nutrient content for sustainable rice agriculture using geographic information system and Naïve Bayes classifier. International Journal on Smart Sensing and Intelligent Systems, 16(1). DOI: 10.2478/ijssis-2023-0001
Zhao, D., & Rosson, M. B. (2009). How and why people Twitter. Proceedings of the 2009 ACM International Conference on Supporting Group Work, 243–252. DOI: 10.1145/1531674.1531710