Have a personal or library account? Click to login
Identification and analysis of Indian farmers’ behavior toward adoption of new farming technologies and e-agriculture schemes through Twitter Cover

Identification and analysis of Indian farmers’ behavior toward adoption of new farming technologies and e-agriculture schemes through Twitter

Open Access
|May 2025

References

  1. Agarwal, A., Xie, B., Vovsha, I., Rambow, O., & Passonneau, R. (2011). Sentiment Analysis of Twitter Data. Association for Computational Linguistics. http://www.webconfs.com/stop-words.php
  2. Anderson, J. R. (2004). Agricultural Extension: Good Intentions and Hard Realities. The World Bank Research Observer, 19(1), 41–60. DOI: 10.1093/wbro/lkh013
  3. Andres, D. and W. J. (2013). Social media handbook for agricultural development practitioners. USAID and FHI 360.
  4. Ataharul Chowdhury, H. H. O. (2013). Social media for Enhancing Innovation in Agri-food and Rural Development: Current Dynamics in Ontario, Canada. Journal of Rural and Community Development, 97–119.
  5. Bijoyan Das and Sarit Chakraborty. (2018). An Improved Text Sentiment Classification Model Using TF-IDF and Next Word Negation. IEEE.
  6. Binswanger, H. P. (1980). Attitudes Toward Risk: Experimental Measurement in Rural India. American Journal of Agricultural Economics, 62(3), 395–407. DOI: 10.2307/1240194
  7. Borrero, J. D., & Zabalo, A. (2021). Identification and Analysis of Strawberries’ Consumer Opinions on Twitter for Marketing Purposes. Agronomy, 11(4), 809. DOI: 10.3390/agronomy11040809
  8. Bournaris, T. (2020). Evaluation of e-Government Web Portals: The Case of Agricultural e-Government Services in Greece. Agronomy, 10(7), 932. DOI: 10.3390/agronomy10070932
  9. Chavas, J., & Nauges, C. (2020). Uncertainty, Learning, and Technology Adoption in Agriculture. Applied Economic Perspectives and Policy, 42(1), 42–53. DOI: 10.1002/aepp.13003
  10. DARE. (2024). Department of Agriculture Research and Education. Retrieved June 2024 from https://dare.gov.in/en
  11. Das V., J., Sharma, S., & Kaushik, A. (2019). Views of Irish Farmers on Smart Farming Technologies: An Observational Study. AgriEngineering, 1(2), 164–187. DOI: 10.3390/agriengineering1020013
  12. Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. DOI: 10.2307/249008
  13. Dr. S. Vijayarani1, Ms. J. I. Ms. N. (2014). Preprocessing Techniques for Text Mining - An Overview., International Journal of Computer Science & Communication Networks.
  14. Drus, Z., & Khalid, H. (2019). Sentiment Analysis in Social Media and Its Application: Systematic Literature Review. Procedia Computer Science, 161, 707–714. DOI: 10.1016/j.procs.2019.11.174
  15. Dwivedi, Y. K., Ismagilova, E., Hughes, D. L., Carlson, J., Filieri, R., Jacobson, J., Jain, V., Karjaluoto, H., Kefi, H., Krishen, A. S., Kumar, V., Rahman, M. M., Raman, R., Rauschnabel, P. A., Rowley, J., Salo, J., Tran, G. A., & Wang, Y. (2021). Setting the future of digital and social media marketing research: Perspectives and research propositions. International Journal of Information Management, 59, 102168. DOI: 10.1016/j.ijinfomgt.2020.102168
  16. Elly, T., & Epafra Silayo, E. (2013). Agricultural information needs and sources of the rural farmers in Tanzania. Library Review, 62(8/9), 547–566. DOI: 10.1108/LR-01-2013-0009
  17. Evenson, R. E. (2001). Chapter 11 Economic impacts of agricultural research and extension (pp. 573–628). DOI: 10.1016/S1574-0072(01)10014-9
  18. Eweoya, I., Okuboyejo, S. R., Odetunmibi, O. A., & Odusote, B. O. (2021). An empirical investigation of acceptance, adoption and the use of E-agriculture in Nigeria. Heliyon, 7(7), e07588. DOI: 10.1016/j.heliyon.2021.e07588
  19. Farmers’ Portal. (2024). Retrieved June 2024 from https://farmer.gov.in/
  20. Ganesh Kumar, C., Murugaiyan, P., & Madanmohan, G. (2017). Agri-Food Supply Chain Management: Literature Review. SSRN Electronic Journal. DOI: 10.2139/ssrn.3093241
  21. Ginige, T., Richards, D., Ginige, A., & Hitchens, M. (2020). Design for Empowerment: Empowering Sri Lankan Farmers through Mobile-based Information System. Communications of the Association for Information Systems, 444–483. DOI: 10.17705/1CAIS.04619
  22. Gongane, V. U., Munot, M. V., & Anuse, A. D. (2022). Detection and moderation of detrimental content on social media platforms: current status and future directions. Social Network Analysis and Mining, 12(1), 129. DOI: 10.1007/s13278-022-00951-3
  23. Goyal, R. (2021). Evaluation of rule-based, CountVectorizer, and Word2Vec machine learning models for tweet analysis to improve disaster relief. 2021 IEEE Global Humanitarian Technology Conference (GHTC), 16–19. DOI: 10.1109/GHTC53159.2021.9612486
  24. Gupta, M., Abdelsalam, M., Khorsandroo, S., & Mittal, S. (2020). Security and Privacy in Smart Farming: Challenges and Opportunities. IEEE Access, 8, 34564–34584. DOI: 10.1109/ACCESS.2020.2975142
  25. Hoi, S. C. H., Sahoo, D., Lu, J., & Zhao, P. (2021). Online learning: A comprehensive survey. Neurocomputing, 459, 249–289. DOI: 10.1016/j.neucom.2021.04.112
  26. Iwuchukwu, J. C., Eke, O. G., & Nwobodo, C. E. (2019). Perception of Extension Personnel on Suitability and Benefits of Using Social Media in Communicating Agricultural Information in Enugu State, Nigeria. Journal of Agricultural Extension, 23(3), 172. DOI: 10.4314/jae.v23i3.15
  27. Jansen, B. J., Zhang, M., Sobel, K., & Chowdury, A. (2009). Twitter power: Tweets as electronic word of mouth. Journal of the American Society for Information Science and Technology, 60(11), 2169–2188. DOI: 10.1002/asi.21149
  28. Javaid, M., Haleem, A., Khan, I. H., & Suman, R. (2023). Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Advanced Agrochem, 2(1), 15–30. DOI: 10.1016/j.aac.2022.10.001
  29. Jijina, C. K., and G. R. (2016). Social media and farmers. International Journal of Research in Engineering and Technology, 20–25.
  30. Kaur, G., Kaushik, A., & Sharma, S. (2019). Cooking Is Creating Emotion: A Study on Hinglish Sentiments of Youtube Cookery Channels Using Semi-Supervised Approach. Big Data and Cognitive Computing, 3(3), 37. DOI: 10.3390/bdcc3030037
  31. Kizgin, H., Dey, B. L., Dwivedi, Y. K., Hughes, L., Jamal, A., Jones, P., Kronemann, B., Laroche, M., Peñaloza, L., Richard, M.-O., Rana, N. P., Romer, R., Tamilmani, K., & Williams, M. D. (2020). The impact of social media on consumer acculturation: Current challenges, opportunities, and an agenda for research and practice. International Journal of Information Management, 51, 102026. DOI: 10.1016/j.ijinfomgt.2019.10.011
  32. Klerkx, L., Jakku, E., & Labarthe, P. (2019). A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS: Wageningen Journal of Life Sciences, 90–91(1), 1–16. DOI: 10.1016/j.njas.2019.100315
  33. Kumar, N., Qiu, L., & Kumar, S. (2022). A Hashtag Is Worth a Thousand Words: An Empirical Investigation of Social Media Strategies in Trademarking Hashtags. Information Systems Research, 33(4), 1403–1427. DOI: 10.1287/isre.2022.1107
  34. Lin, Y.-P., Petway, J., Anthony, J., Mukhtar, H., Liao, S.-W., Chou, C.-F., & Ho, Y.-F. (2017). Blockchain: The Evolutionary Next Step for ICT E-Agriculture. Environments, 4(3), 50. DOI: 10.3390/environments4030050
  35. Mangla, S. K., Luthra, S., Rich, N., Kumar, D., Rana, N. P., & Dwivedi, Y. K. (2018). Enablers to implement sustainable initiatives in agri-food supply chains. International Journal of Production Economics, 203, 379–393. DOI: 10.1016/j.ijpe.2018.07.012
  36. Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093–1113. DOI: 10.1016/j.asej.2014.04.011
  37. Miller, N. J., Griffin, T. W., Ciampitti, I. A., & Sharda, A. (2019). Farm adoption of embodied knowledge and information intensive precision agriculture technology bundles. Precision Agriculture, 20(2), 348–361. DOI: 10.1007/s11119-018-9611-4
  38. Mills, J., Reed, M., Skaalsveen, K., & Ingram, J. (2019). The use of Twitter for knowledge exchange on sustainable soil management. Soil Use and Management, 35(1), 195–203. DOI: 10.1111/sum.12485
  39. Moysiadis, V., Sarigiannidis, P., Vitsas, V., & Khelifi, A. (2021). Smart Farming in Europe. Computer Science Review, 39, 100345. DOI: 10.1016/j.cosrev.2020.100345
  40. Mwangi, M., & Kariuki, S. (2015). Factors Determining Adoption of New Agricultural Technology by Smallholder Farmers in Developing Countries. In Journal of Economics and Sustainable Development www.iiste.orgISSN (Vol. 6, Issue 5). Online. www.iiste.org
  41. Naveen Kumar, L. Q. S. K. (2022). A Hashtag is Worth a Thousand Words: An Empirical Investigation of Social Media Strategies in Trademarking Hashtags. Forthcoming in Information Systems Research.
  42. Neogi, A. S., Garg, K. A., Mishra, R. K., & Dwivedi, Y. K. (2021). Sentiment analysis and classification of Indian farmers’ protest using twitter data. International Journal of Information Management Data Insights, 1(2), 100019. DOI: 10.1016/j.jjimei.2021.100019
  43. Ngowi, K. N., dan O. H. (2015). Electronic Market System for Agriculture in Tanzania, Thesis. Aalborg University Copenhagen, Denmark.
  44. Ni, R., & Cao, H. (2020). Sentiment Analysis based on GloVe and LSTM-GRU. 2020 39th Chinese Control Conference (CCC), 7492–7497. DOI: 10.23919/CCC50068.2020.9188578
  45. Nkundabanyanga, S. K., Mvura, P., Nyamuyonjo, D., Opiso, J., & Nakabuye, Z. (2017). Tax compliance in a developing country. Journal of Economic Studies, 44(6), 931–957. DOI: 10.1108/JES-03-2016-0061
  46. Ofori, M., & El-Gayar, O. (2021). Drivers and challenges of precision agriculture: a social media perspective. Precision Agriculture, 22(3), 1019–1044. DOI: 10.1007/s11119-020-09760-0
  47. Orçun Kaya, A., Jan Schildbach, E., & Research Management Stefan Schneider, D. (2019). EU Monitor Global financial markets Artificial intelligence in banking. www.dbresearch.com
  48. Pradhan Mantri Fasal Bima Yojana. (2024). Retrieved May 5, 2024, from https://pmfby.gov.in/
  49. Pradhan Mantri Kisan Maan Dhan Yojana. (2024). Retrieved May 8, 2024, from https://www.maandhan.in/
  50. Pradhan Mantri Krishi Sinchai Yojana. (2024). Retrieved May 15, 2024, from https://pmksy.gov.in/
  51. Qaiser, S., & Ali, R. (2018). Text Mining: Use of TF-IDF to Examine the Relevance of Words to Documents. International Journal of Computer Applications, 181(1), 25–29. DOI: 10.5120/ijca2018917395
  52. Rai, S. K., Singh, J. P., Kumar, K., & Alhamzi, K. H. M. (2024). An Empirical Exploration of E-Agriculture System Acceptance, Satisfaction, and Usage. International Journal of Electronic Government Research, 20(1), 1–26. DOI: 10.4018/IJEGR.344814
  53. Rashid, M. M., Islam, R., Quamruzzaman, M., Yeasmin, M., & Azad, M. J. (2016). Impact of E-Agriculture on Farmer’s Livelihood in Bangladesh. J. Agric. & Environ. Sci, 16(5), 976–983. DOI: 10.5829/idosi.aejaes.2016.16.5.12915
  54. Robertson, S. (2004). Understanding inverse document frequency: on theoretical arguments for IDF. Journal of Documentation, 60(5), 503–520. DOI: 10.1108/00220410410560582
  55. Santur, Y. (2019). Sentiment Analysis Based on Gated Recurrent Unit. 2019 International Artificial Intelligence and Data Processing Symposium (IDAP), 1–5. DOI: 10.1109/IDAP.2019.8875985
  56. Sarah Cornelisse, J. H. C. R. K. K. D. O. J. R. (2011). Entrepreneurial extension conducted via social media. Journal of Extension.
  57. Silge, J. and R. D. (2017). Text mining with R: A tidy approach. O’ Reilly Media Inc.
  58. Srinivas, A. C. M. V., Satyanarayana, Ch., Divakar, Ch., & Sirisha, K. P. (2021). Sentiment Analysis using Neural Network and LSTM. IOP Conference Series: Materials Science and Engineering, 1074(1), 012007. DOI: 10.1088/1757-899X/1074/1/012007
  59. Thongkhao, K., Ruang-on, S., & Tina, F. W. (2024). Development of an IoT-Based Smart Watering System for Monitoring and Increasing Soil Moisture Content in “Tabtim Siam” Pomelo Garden in Pak Phanang District, Nakhon Si Thammarat Province, Southern Thailand. International Journal on Smart Sensing and Intelligent Systems, 17(1). DOI: 10.2478/ijssis-2024-0030
  60. Toledo, C. A., Villegas, A. M., & Muñoz, L. A. (2022). Model based on the principles of smart agriculture to mitigate the effects of frost and improve agricultural production in the Cundiboyacense plateau. International Journal on Smart Sensing and Intelligent Systems, 15(1). DOI: 10.2478/ijssis-2022-0006
  61. Tom Phillipsa, L. K. M. M. (2018). An investigation of social media’s roles in knowledge exchange by farmers. Theme 1 – Learning and Knowledge Systems, Education, Extension and Advisory Services.
  62. Twitter. (2011). Retrieved June 5, 2024, from https://x.com/i/flow/login
  63. Tyagi, A., Reddy, A. A., Singh, J., & Chowdhury, S. R. (2011). A Low Cost Portable Temperature-Moisture Sensing Unit with Artificial Neural Network Based Signal Conditioning For Smart Irrigation Applications. International Journal on Smart Sensing and Intelligent Systems, 4(1), 94–111. DOI: 10.21307/ijssis-2017-428
  64. Usop, E. S., Isnanto, R. R., & Kusumaningrum, R. (2017). Part of speech features for sentiment classification based on Latent Dirichlet Allocation. 2017 4th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), 31–34. DOI: 10.1109/ICITACEE.2017.8257670
  65. Visconti, P., Ferri, R., Pucciarelli, M., & Venere, E. (2016). Development and Characterization of a Solarbased Energy Harvesting and Power Management System for a WSN Node Applied to Optimized Goods Transport and Storage. International Journal on Smart Sensing and Intelligent Systems, 9(4), 1637–1667. DOI: 10.21307/ijssis-2017-933
  66. Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). Big Data in Smart Farming – A review. Agricultural Systems, 153, 69–80. DOI: 10.1016/j.agsy.2017.01.023
  67. Yao, T., Zhai, Z., & Gao, B. (2020). Text Classification Model Based on fastText. 2020 IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS), 154–157. DOI: 10.1109/ICAIIS49377.2020.9194939
  68. Yudhana, A., Cahyo, A. D., Sabila, L. Y., Subrata, A. C., & Mufandi, I. (2023). Spatial distribution of soil nutrient content for sustainable rice agriculture using geographic information system and Naïve Bayes classifier. International Journal on Smart Sensing and Intelligent Systems, 16(1). DOI: 10.2478/ijssis-2023-0001
  69. Zhang Chunhua, & Zhang Bo. (2010). Bottleneck problems in China’s E-Agr development. 2010 The 2nd Conference on Environmental Science and Information Application Technology, 628–631. DOI: 10.1109/ESIAT.2010.5568741
  70. Zhao, D., & Rosson, M. B. (2009). How and why people Twitter. Proceedings of the 2009 ACM International Conference on Supporting Group Work, 243–252. DOI: 10.1145/1531674.1531710
Language: English
Submitted on: Nov 9, 2024
Published on: May 16, 2025
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2025 Santosh Kumar Rai, Jyoti Prakash Singh, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.