References
- Ahmadi, M. A., Ebadi, M., Shokrollahi, A. and Majidi, S. M. J. 2013. Evolving artificial neural network and imperialist competitive algorithm for prediction oil flow rate of the reservoir. Applied Soft Computing 13(2): 1085–1098.
- AL-Qutami, T. A. 2017. Heterogeneous Ensemble Learning For Virtual Flow Metering Applications, Master of Science Thesis, Universiti Teknologi PETRONAS.
- AL-Qutami, T. A., Ibrahim, R., Ismail, I. and Ishak, M. A. 2018. Virtual multiphase flow metering using diverse neural network ensemble and adaptive simulated annealing. Expert Syst. Appl. 93: 72–85.
- American Petroleum Institute (API). 2013. Manual of Petroleum Measurement Standards Chapter 20.3 Measurement of Multiphase Flow.
- Andrianov, N. 2018. A machine learning approach for virtual flow metering and forecasting. IFAC-Pap. 51(8): 191–196; [Online]. Available:
https://arxiv.org/pdf/1802.05698.pdf . - Belt, R., Duret, E., Larrey, D., Djoric, B. and Kalali, S. 2011. Comparison of commercial multiphase flow simulators with experimental and field databases. 15th International Conference on Multiphase Production Technology, Cannes, France, June 2011, p. 15. [Online]. Available: https://doi.org/.
- Bikmukhametov, T. and Jäschke, J. 2019. Oil production monitoring using gradient boosting machine learning algorithm. IFAC-Pap. 52(1): 514–519.
- Bikmukhametov, T. and Jäschke, J. 2020a. Combining machine learning and process engineering physics towards enhanced accuracy and explainability of data-driven models. Computers & Chemical Engineering, p. 106834, doi:
https://doi.org/10.1016/j.compchemeng.2020.106834 . - Bikmukhametov, T. and Jäschke, J. 2020b. First principles and machine learning virtual flow metering: a literature review. Journal of Petroleum Science and Engineering 184: 106487.
- Canon, J. M., Yau, S., Francisco, A., Angola, B., Espeland, M. and Lundsbakken, K. E. 2015. Online Transient Simulation in Deepwater Operations: Practical Experiences, vol. All Days, doi: 10.4043/25740-MS.
- Fetoui, I. Introduction to IPR and VLP. Production Technology. [Online]. Available:
https://production-technology.org/introduction-ipr-vlp/ . - Grimstad, B., Hotvedt, M., Sandnes, A. T., Kolbjørnsen, O. and Imsland, L. S. 2021. Bayesian Neural Networks for Virtual Flow Metering: An Empirical Study. ArXiv Prepr. ArXiv210201391.
- I. O. for S. (ISO). 2003. Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full. International Organization for Standardization (ISO), [Online]. Available:
https://www.iso.org/standard/28064.html . - Ishak, M. A., Hasan AL-Qutami, T. A., Ellingsen, H., Ruden, T. and Khaledi, H. 2020. Evaluation of data driven versus multiphase transient flow simulator for virtual flow meter application.
- Kim, H., Lee, N. and Seo, Y. 2020. Development and Employment of Dynamic Simulation Integrator for OLGA and HYSYS, vol. All Days.
- Mokhtari Jadid, K. 2017. [Online]. Available:
https://digitalcommons.lsu.edu/gradschool_dissertations/4303?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4303&utm_medium=PDF&utm_campaign=PDFCoverPages . - Naik, K. 2019a. Random Forest(Bootstrap Aggregation) Easily Explained,
https://www.youtube.com/watch?v=iajaNLLCOF4 . - Naik, K. 2019b. Tutorial 42 - Ensemble: What is Bagging (Bootstrap Aggregation)?
https://www.youtube.com/watch?v=KIOeZ5cFZ50 . - Naik, K. 2020. Machine Learning-Bias And Variance In Depth Intuition| Overfitting Underfitting,
https://www.youtube.com/watch?v=BqzgUnrNhFM . - Norwegian Society for Oil and Gas Measurement (NFOGM). 2005. Handbook of Multiphase Flow Metering. The Norwegian Society for Oil and Gas Measurement (NFOGM).
- Opitz, D. and Maclin, R. 1999. Popular ensemble methods: an empirical study. Journal of Artificial Intelligence Research 11: 169–198.
- PETRONAS. 2013. PETRONAS Technical Standards Liquid Hydrocarbon Custody Transfer and Allocation Measurement.
- PETRONAS. 2015. PETRONAS Technical Standards Multiphase Flow Metering System. PETROLIAM NASIONAL BERHAD.
- Poulisse, H., van Overschee, P., Briers, J., Moncur, C. and Goh, K.-C. 2006. Continuous Well Production Flow Monitoring and Surveillance, presented at the Intelligent Energy Conference and Exhibition, doi: 10.2118/99963-MS.
- Powerhouse, K. 2020. What is the difference between bagging and boosting methods in ensemble learning?
https://www.youtube.com/watch?v=UeYG64Hm7Es&t=82s . - Process Industry Practices (PIP). 2015. Flow Measurement Guidelines. Process Industry Practices (PIP), [Online]. Available:
https://standards.globalspec.com/std/10158393/pip-pcefl001 . - Semicolon, T. 2017. Scikit Learn Ensemble Learning, Bootstrap Aggregating (Bagging) and Boosting,
https://www.youtube.com/watch?v=X3Wbfb4M33w . - Turbulent Flux, A. S. 2020. Turbulent Flux. [Online]. Available
https://turbulentflux.com . - Wolpert, D. H. 1992. Stacked generalization. Neural Netw. 5(2): 241–259.