Have a personal or library account? Click to login
Virtual Multiphase Flow Meter using combination of Ensemble Learning and first principle physics based Cover

Virtual Multiphase Flow Meter using combination of Ensemble Learning and first principle physics based

Open Access
|Jun 2022

References

  1. Ahmadi, M. A., Ebadi, M., Shokrollahi, A. and Majidi, S. M. J. 2013. Evolving artificial neural network and imperialist competitive algorithm for prediction oil flow rate of the reservoir. Applied Soft Computing 13(2): 1085–1098.
  2. AL-Qutami, T. A. 2017. Heterogeneous Ensemble Learning For Virtual Flow Metering Applications, Master of Science Thesis, Universiti Teknologi PETRONAS.
  3. AL-Qutami, T. A., Ibrahim, R., Ismail, I. and Ishak, M. A. 2018. Virtual multiphase flow metering using diverse neural network ensemble and adaptive simulated annealing. Expert Syst. Appl. 93: 72–85.
  4. American Petroleum Institute (API). 2013. Manual of Petroleum Measurement Standards Chapter 20.3 Measurement of Multiphase Flow.
  5. Andrianov, N. 2018. A machine learning approach for virtual flow metering and forecasting. IFAC-Pap. 51(8): 191–196; [Online]. Available: https://arxiv.org/pdf/1802.05698.pdf.
  6. Belt, R., Duret, E., Larrey, D., Djoric, B. and Kalali, S. 2011. Comparison of commercial multiphase flow simulators with experimental and field databases. 15th International Conference on Multiphase Production Technology, Cannes, France, June 2011, p. 15. [Online]. Available: https://doi.org/.
  7. Bikmukhametov, T. and Jäschke, J. 2019. Oil production monitoring using gradient boosting machine learning algorithm. IFAC-Pap. 52(1): 514–519.
  8. Bikmukhametov, T. and Jäschke, J. 2020a. Combining machine learning and process engineering physics towards enhanced accuracy and explainability of data-driven models. Computers & Chemical Engineering, p. 106834, doi: https://doi.org/10.1016/j.compchemeng.2020.106834.
  9. Bikmukhametov, T. and Jäschke, J. 2020b. First principles and machine learning virtual flow metering: a literature review. Journal of Petroleum Science and Engineering 184: 106487.
  10. Canon, J. M., Yau, S., Francisco, A., Angola, B., Espeland, M. and Lundsbakken, K. E. 2015. Online Transient Simulation in Deepwater Operations: Practical Experiences, vol. All Days, doi: 10.4043/25740-MS.
  11. Fetoui, I. Introduction to IPR and VLP. Production Technology. [Online]. Available: https://production-technology.org/introduction-ipr-vlp/.
  12. Grimstad, B., Hotvedt, M., Sandnes, A. T., Kolbjørnsen, O. and Imsland, L. S. 2021. Bayesian Neural Networks for Virtual Flow Metering: An Empirical Study. ArXiv Prepr. ArXiv210201391.
  13. I. O. for S. (ISO). 2003. Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full. International Organization for Standardization (ISO), [Online]. Available: https://www.iso.org/standard/28064.html.
  14. Ishak, M. A., Hasan AL-Qutami, T. A., Ellingsen, H., Ruden, T. and Khaledi, H. 2020. Evaluation of data driven versus multiphase transient flow simulator for virtual flow meter application.
  15. Kim, H., Lee, N. and Seo, Y. 2020. Development and Employment of Dynamic Simulation Integrator for OLGA and HYSYS, vol. All Days.
  16. Mokhtari Jadid, K. 2017. [Online]. Available: https://digitalcommons.lsu.edu/gradschool_dissertations/4303?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F4303&utm_medium=PDF&utm_campaign=PDFCoverPages.
  17. Naik, K. 2019a. Random Forest(Bootstrap Aggregation) Easily Explained, https://www.youtube.com/watch?v=iajaNLLCOF4.
  18. Naik, K. 2019b. Tutorial 42 - Ensemble: What is Bagging (Bootstrap Aggregation)? https://www.youtube.com/watch?v=KIOeZ5cFZ50.
  19. Naik, K. 2020. Machine Learning-Bias And Variance In Depth Intuition| Overfitting Underfitting, https://www.youtube.com/watch?v=BqzgUnrNhFM.
  20. Norwegian Society for Oil and Gas Measurement (NFOGM). 2005. Handbook of Multiphase Flow Metering. The Norwegian Society for Oil and Gas Measurement (NFOGM).
  21. Opitz, D. and Maclin, R. 1999. Popular ensemble methods: an empirical study. Journal of Artificial Intelligence Research 11: 169–198.
  22. PETRONAS. 2013. PETRONAS Technical Standards Liquid Hydrocarbon Custody Transfer and Allocation Measurement.
  23. PETRONAS. 2015. PETRONAS Technical Standards Multiphase Flow Metering System. PETROLIAM NASIONAL BERHAD.
  24. Poulisse, H., van Overschee, P., Briers, J., Moncur, C. and Goh, K.-C. 2006. Continuous Well Production Flow Monitoring and Surveillance, presented at the Intelligent Energy Conference and Exhibition, doi: 10.2118/99963-MS.
  25. Powerhouse, K. 2020. What is the difference between bagging and boosting methods in ensemble learning? https://www.youtube.com/watch?v=UeYG64Hm7Es&t=82s.
  26. Process Industry Practices (PIP). 2015. Flow Measurement Guidelines. Process Industry Practices (PIP), [Online]. Available: https://standards.globalspec.com/std/10158393/pip-pcefl001.
  27. Semicolon, T. 2017. Scikit Learn Ensemble Learning, Bootstrap Aggregating (Bagging) and Boosting, https://www.youtube.com/watch?v=X3Wbfb4M33w.
  28. Turbulent Flux, A. S. 2020. Turbulent Flux. [Online]. Available https://turbulentflux.com.
  29. Wolpert, D. H. 1992. Stacked generalization. Neural Netw. 5(2): 241–259.
Language: English
Submitted on: Nov 15, 2021
Published on: Jun 29, 2022
Published by: Professor Subhas Chandra Mukhopadhyay
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Mohd Azmin Ishak, Tareq Aziz Hasan Al-qutami, Idris Ismail, published by Professor Subhas Chandra Mukhopadhyay
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.