Have a personal or library account? Click to login
Application of a generalized heat equation to processes ultra-fast in viscoanelastic isotropic medium Cover

Application of a generalized heat equation to processes ultra-fast in viscoanelastic isotropic medium

Open Access
|Dec 2025

References

  1. Ciancio V., Derivations of the stress-strain relations for viscoanelastic media and the heat equation in irreversible thermodynamic with internal variables, International Journal of Mathematics and Computer in Engineering, 2(2), 141–154, 2024.
  2. Kluitenberg G.A., On vectorial internal variables and dielectric and magnetic relaxation phenomena, Physica A: Statistical Mechanics and its Applications, 109(1–2), 91–122, 1981.
  3. Ciancio V., On the generalized Debye equation for media with dielectric relaxation phenomena described by vectorial internal variables, Journal of Non-Equilibrium Thermodynamics, 14(3), 239–250, 1989.
  4. Ciancio V., Restuccia L., Kluitenberg G.A., A thermodynamic derivation of equations for dielectric relaxation phenomena in anisotropic polarizable media, Journal of Non-Equilibrium Thermodynamics, 15, 151–171, 1990.
  5. Ciancio V., Kluitenberg G.A., On electromagnetic waves in isotropic media with dielectric relaxation, Acta Physica Hungarica, 66 (1–4), 251–276, 1989.
  6. Ciancio V., Palumbo A., A thermodynamical theory with internal variables describing thermal effects in viscous fluids, Journal of Non-Equilibrium Thermodynamics, 43(2), 171–184, 2018.
  7. Kluitenberg G.A., The Constitutive Law in Thermoplasticity (Chapter: Plasticity and non-equilibrium thermodynamics), 157–250, Springer, USA, 1984.
  8. Kluitenberg G.A., A thermodynamic derivation of the stress-strain relations for Burgers media and related substances, Physica, 38(4), 513–548, 1968.
  9. Kluitenberg G.A., Ciancio V., On linear dynamical equations of state for isotropic media I: General formalism, Physica A: Statistical Mechanics and its Applications, 93(1–2), 273–286, 1978.
  10. Ciancio V., Kluitenberg G.A., On linear dynamical equations of state for isotropic media II- Some cases of special interest, Physica, 99A, 592–600, 1979.
  11. Ciancio V., Propagation and attenuation of singular wave surfaces in linear inelastic media, Physica A: Statistical Mechanics and its Applications, 97(1), 127–138, 1979.
  12. Ciancio V., Restuccia L., On heat equation in the framework of classic irreversible thermodynamics with internal variables, International Journal of Geometric Methods in Modern Physics, 13(08), 1640003, 2016.
  13. Ciancio V., Verhás J., A thermodynamic theory for radiating heat transfer, Journal of Non-Equilibrium Thermodynamics, 15(1), 33–43, 1990.
  14. Ciancio V., Verhás J., A thermodynamic theory for heat radiation through the atmosphere, Journal of Non-Equilibrium Thermodynamics, 16(1), 57–65, 1991.
  15. Ciancio V., On the temperature equation in classic irreversible thermodynamics, Applied Sciences, 24, 71–86, 2022.
  16. Ciancio A., Ciancio V., Francesco F., Wave propagation in media obeying thermoviscoanelastic model, U.P.B. Scientific Bulletin Series A: Applied Mathematics and Physics, 69(4), 69–79, 2007.
  17. Ciancio A., An approximate evaluation of the phenomenological and state coefficients for visco-anelastic media with memory, U.P.B. Scientific Bulletin, Series A: Applied Mathematics and Physics, 73(4), 3–14, 2011.
  18. Ciancio V., Ciancio A., Farsaci F., On general properties of phenomenological and state coefficients for isotropic viscoanelastic media, Physica B: Condensed Matter, 403(18), 3221–3227, 2008.
  19. Ciancio V., Bartolotta A., Farsaci F., Experimental confirmations on a thermodynamical theory for viscoanelastic media with memory, Physica B: Condensed Matter, 394(1), 8–13, 2007.
  20. Ciancio V., Farsaci F., Di Marco G., A method for experimental evaluation of phenomenological coefficients in media with dielectric relaxation, Physica B: Condensed Matter, 387(1–2), 130–135, 2007.
  21. Ciancio A., Flora B.F.F., A fractional complex permettivity model of media with dielectric relaxation, Fractal and Fractional, 1(1), 4, 2017.
  22. Ciancio A., Ciancio V., d’Onofrio A., Flora B.F.F., A fractional model of complex permettivity of conductor media with relaxation: theory vs. experiments, Fractal and Fractional, 6(7), 390, 2022.
  23. Ciancio A., Ciancio V., Flora B.F.F., A fractional rheological model of viscoanelastic media, Axioms, 12(3), 243, 2023.
  24. Nisar K.S., Kaliraj K., Manjula M., Ravichandran C., Alsaeed S., Munjam S.R., Existence of a mild solution for a fractional impulsive differential equation of the Sobolev type including deviating argument, Results in Control and Optimization, 16, 100451, 2024.
  25. Biccari U., Hernández-Santamaría V., Controllability of a one-dimensional fractional heat equation: theoretical and numerical aspects, IMA Journal of Mathematical Control and Information, 36, 1199–1235, 2019.
  26. Fourier J.B.J., Théorie analytique de la chaleur, Chez Firmin Didot, France, 1822.
  27. Maxwell M.A., Clerk J., Edin L.L.D., F.R.SS. L. & E., Theory of Heat (2nd Ed.), Longman, UK, 1872.
  28. Cattaneo A., Some Aspects of Diffusion Theory, (Chapter: Sulla conduzione del calore), Atti del Seminario Matematico e Fisico dell’Universita di Modena, 3, 83–101, 1948.
  29. Vernotte P., Les paradoxes de la theorie continue de l’èquation de la chaleur, Comptes Rendus, 264(22), 3154, 1958.
  30. Wu Y., Chen Y., Kong L., Jing Z., Liang X., A review on ultrafast-laser power bed fusion technology, Crystals, 12(10), 1480, 2022.
  31. Tzou D.Y., A unified field approach for heat conduction from macro-to micro-scales, Journal of Heat Transfer, 117(1), 8–16, 1995.
  32. Anonymus, MUltifrontal Massively Parallel Solver (MUMPS 5.7.3.) User’s Guide, https://mumps-solver.org/, Accessed: August 18, 2024.
  33. Amestoy P.R., Duff I.S., L’Excellent J.Y., Koster J., A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM Journal on Matrix Analysis and Applications, 23(1), 15–41, 2001.
  34. Amestoy P.R., Buttari A., L’Excellent J.Y., Mary T., Performance and scalability of the block low-rank multifrontal factorization on multicore architectures, ACM Transactions on Mathematical Software, 45(1), 1–26, 2019.
  35. Yağmurlu N.M., Karakaş A.S., Numerical solutions of the equal width equation by trigonometric cubic B-spline collocation method based on Rubin–Graves type linearization, Numerical Methods for Partial Differential Equations, 36(5), 1170–1183, 2020.
  36. Yağmurlu N.M., Karakaş A.S., A novel perspective for simulations of the MEW equation by trigonometric cubic B-spline collocation method based on Rubin-Graves type linearization, Computational Methods for Differential Equations, 10(4), 1046–1058, 2022.
  37. Kutluay S., Yağmurlu N.M., Karakaş A.S., A novel perspective for simulations of the Modified Equal-Width Wave equation by cubic Hermite B-spline collocation method, Wave Motion, 129(103342), 1–16, 2024.
  38. Kutluay S., Yağmurlu N.M., Karakaş A.S., A robust quintic hermite collocation method for one-dimensional heat conduction equation, Journal of Mathematical Sciences and Modelling, 7(2), 82–89, 2024.
  39. Tzou D.Y., Macro-to Microscale Heat Transfer: The Lagging Behavior, John Wiley & Sons, USA, 2014.
Language: English
Submitted on: Jul 28, 2024
Accepted on: Sep 8, 2024
Published on: Dec 18, 2025
Published by: Harran University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Armando Ciancio, Bruno Felice Filippo Flora, published by Harran University
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT