Have a personal or library account? Click to login
Factors Predicting Singers’ Work Efficiency and Singers’ Singing Peak Cover

Factors Predicting Singers’ Work Efficiency and Singers’ Singing Peak

By: Xuejie Huang and  Mei Foong Ang  
Open Access
|Mar 2024

References

  1. Akaike, H. (1973). Information Theory and an Extension of the Maximum Likelihood Principle. Foundations and Basic Theory, 1, 267–281.
  2. Banse, R., & Scherer, K. R. (1996). Acoustic Profiles in Vocal Emotion Expression. Journal of Personality and Social Psychology, 70(3), 614–636. https://doi.org/10.1037/0022-3514.70.3.614
  3. Chen, X., Yang, J., Gan, S., & Yang, Y. (2012). The contribution of sound intensity in vocal emotion perception: Behavioral and electrophysiological evidence. PLoS ONE, 7(1). https://doi.org/10.1371/journal.pone.0030278
  4. Cuadrado, M., Miquel, M. J., & Montoro, J. D. (2015). Analyzing Music Services Positioning through Qualitative Research. Market-Tržište, 27(2), 251–263. https://doi.org/https://hrcak.srce.hr/151325
  5. Eidsheim, N. S. (2011). Sensing Voice-Materiality and the Lived Body in Singing and Listening.pdf. Science&Society, 6(2), 133–155.
  6. Grady, M. L., & Cook-Cunningham, S. L. (2020). The Effects of Three Physical and Vocal Warm-up Procedures on Acoustic and Perceptual Measures of Choral Sound: Study Replication With Younger Populations. Journal of Voice, 34(4), 647.e15–647.e22. https://doi.org/10.1016/j.jvoice.2018.12.009
  7. Han, Q., & Zhang, R. (2017). Acoustic Analyses of the Singing Vibrato in Traditional Peking Opera. Journal of Voice, 31(4), 511.e1–511.e9. https://doi.org/10.1016/j.jvoice.2016.11.016
  8. Herbst, J., & Tim, A. (2018). The Work Realities of Professional Studio Musicians in the German Popular Music Recording Industry: Careers, Practices and Economic Situations. IASPM Journal, 8(2), 18–37. https://doi.org/10.5429/2079-3871(2018)v8i2.3en
  9. Hutchins, S., Larrouy-maestri, P., & Peretz, I. (2014). Singing ability is rooted in vocal-motor control of pitch. Atten Percept Psychophys, July, 2522–2530. https://doi.org/10.3758/s13414-014-0732-1
  10. Kim, J., & Kang, M. Y. (2022). Sustainable success in the music industry: Empirical analysis of music preferences. Journal of Business Research, 142(January), 1068–1076. https://doi.org/10.1016/j.jbusres.2022.01.021
  11. Lerch, A., Arthur, C., Pati, A., & Gururani, S. (2020). An Interdisciplinary Review of Music Performance Analysis. Transactions of the International Society for Music Information Retrieval, 3(1), 221–245. https://doi.org/10.5334/tismir.53
  12. Madudová, E. (2017). Creative industries value chain: The value chain logic in supply chain relationships. Marketing and Branding Research, 4(3), 227–235. https://doi.org/10.33844/mbr.2017.60236
  13. Maslow, A. (1971). Farther reaches of human nature.
  14. Na, D. E. C., & Hipertensiva, C. (2022). Introduction to Mediation, Moderation and Conditional Process Analysis-A Regression-based Approach.pdf.
  15. O’Brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality and Quantity, 41(5), 673–690. https://doi.org/10.1007/s11135-006-9018-6
  16. Paul, D. (2012). A musicianship for the recording studio. In Sound musicianship: Understanding the crafts of music (pp. 1–6). Cambridge Scholars.
  17. Perrett Jr., H. H. (2011). New Business Models for Music. Villanova Sports and Entertainment Law Journal, 18(January), 63.
  18. Petekkaya, E., Özandaç Polat, S., & Hilmi Yücel, A. (2018). Comparative Analysis of Vocal Intensity and Aerodynamic Parameters between Singers and Non-Singers. SM Otolaryngology, 2(1), 1–4. https://doi.org/10.36876/smotol.1016
  19. Portet, S. (2020). A primer on model selection using the Akaike Information Criterion. Infectious Disease Modelling, 5, 111–128. https://doi.org/10.1016/j.idm.2019.12.010
  20. Rink, J. (2002). Analysis and (or?) performance. In J. Rink (Ed.), Musical Performance: A Guide to Understanding (pp. 35–58). Cambridge University Press. https://doi.org/DOI: 10.1017/CBO9780511811739.004
  21. Ruoslahti, H. (2020). Complexity in project co-creation of knowledge for innovation. Journal of Innovation and Knowledge, 5(4), 228–235. https://doi.org/10.1016/j.jik.2019.12.004
  22. Saragih, H. S. (2017). Critical success factors of recording studio in Indonesia. Asia Pacific Journal of Marketing and Logistics, 29(3), 686–699. https://doi.org/10.1108/APJML-07-2016-0123
  23. Saragih, H. S., Simatupang, T. M., & Sunitiyoso, Y. (2019). Co-innovation processes in the music business. Heliyon, 5(4). https://doi.org/10.1016/j.heliyon.2019.e01540
  24. Scherer, K. R., Sundberg, J., Fantini, B., Trznadel, S., & Eyben, F. (2017). The expression of emotion in the singing voice: Acoustic patterns in vocal performance. The Journal of the Acoustical Society of America, 142(4), 1805–1815. https://doi.org/10.1121/1.5002886
  25. Silas, S., Müllensiefen, D., & Kopiez, R. (2023). Singing Ability Assessment: Development and validation of a singing test based on item response theory and a general open-source software environment for singing data. Behavior Research Methods, 0123456789. https://doi.org/10.3758/s13428-023-02188-0
  26. Titze, I. R. (1992). Vocal intensity in speakers and singers. Journal of the Acoustical Society of America, 91(5), 2936–2946. https://doi.org/10.1121/1.402929
  27. Turner, V., & Newman, F. (2005). Being Who You Aren’t ; Doing What You Can’t: Community music therapy & the para-doxes of performance. Voices: A World Forum for Music Therapy. https://doi.org/doi.org/10.15845/voices.v5i3.229
  28. Umbert, M., Bonada, J., Goto, M., Nakano, T., & Sundberg, J. (2015). Expression Control in Singing Voice Synthesis. IEEE Signal Processing Magazine, 32(6), 55–73. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7298564
  29. Wilson, H. (2021). Measuring the Association Between Vocal Effort and Intensity with Emotion Picture Viewing using the Borg Centimax.
Language: English
Page range: 17 - 26
Submitted on: Nov 14, 2023
Accepted on: Jan 25, 2024
Published on: Mar 30, 2024
Published by: International Music Business Research Association (IMBRA)
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Xuejie Huang, Mei Foong Ang, published by International Music Business Research Association (IMBRA)
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.