Have a personal or library account? Click to login
Commanding an assistive robotic arm in activities of daily living. Turning users into partners: Co-designing a robotic arm command system / Steuerung eines Assistenzroboterarms bei Aktivitäten des täglichen Lebens. Nutzer:innen zu Partner:innen machen: Gemeinsame Entwicklung eines Steuerungssystems für Roboterarme Cover

Commanding an assistive robotic arm in activities of daily living. Turning users into partners: Co-designing a robotic arm command system / Steuerung eines Assistenzroboterarms bei Aktivitäten des täglichen Lebens. Nutzer:innen zu Partner:innen machen: Gemeinsame Entwicklung eines Steuerungssystems für Roboterarme

Open Access
|Dec 2025

References

  1. Alvarez, L., Cook, A., & Polgar, J. (2022). Rehabilitation engineering. In A. M. Cook & J. M. Polgar (Hrsg.), Assistive technologies: Principles and practice (6. Ed.). Elsevier.
  2. Atigossou, O. L. G., Demers, M-H., Paquet, M. P., Bradet-Levesque, I., Campeau-Lecours, A., Routhier, F., & Flamand, V. H. (2024). Usability of mechanical assistive technologies for performing activities involving the upper extremities in individuals with impairments: a systematic review. Disability and Rehabilitation: Assistive Technology, 20(1), 14–32. https://doi.org/10.1080/17483107.2024.2356833
  3. Brooke, J. (1995). SUSd: A quick and dirty usability scale. Usability evaluation in industry, 189(194), 4–7. https://www.taylorfrancis.com/chapters/edit/10.1201/9781498710411-35/sus-quick-dirty-usability-scale-john-brooke
  4. Brose, S. W., Weber, D. J., Salatin, B. A., Grindle, G. G., Wang, H., Vazquez, J.J., & Cooper, R. A. The Role of Assistive Robotics in the Lives of Persons with Disability. American Journal of Physical Medicine & Rehabilitation 89(6), 509–521, DOI: 10.1097/PHM.0b013e3181cf569b
  5. Frennert, S., Östlund, B. (2014). Review: Seven Matters of Concern of Social Robots and Older People. International Journal of Social Robotics 6, 299–310. https://doi.org/10.1007/s12369-013-0225-8
  6. Gulliksen, J., Göransson, B., Boivie, I., Blomkvist, S., Persson, J., & Cajander, Å. (2003). Key principles for user-centred systems design. Behaviour & Information Technology, 22(6), 397–409. https://doi.org/10.1080/01449290310001624329
  7. Hutmacher, N., Bellwald, A., Rätz, R. et al. 2025. Identification of needs for an assistive robotic arm in individuals with tetraplegia: a mixed-methods approach. Journal of NeuroEngineering and Rehabilitation. 22, 113. https://doi.org/10.1186/s12984-025-01642-8
  8. Jain, S., Farshchiansadegh, A., Broad, A., Abdollahi, F., Mussa-Ivaldi, F., & Argall, B. (2015). Assistive Robotic Manipulation through Shared Autonomy and a Body-Machine Interface. IEEE. International Conference on Rehabilitation Robotics : [proceedings], 2015, 526–531. https://doi.org/10.1109/ICORR.2015.7281253
  9. McDowell, C. L., Moberg, E. A., & Smith, G. International conference on surgical rehabilitation of the upper limb in tetraplegia, The Journal of Hand Surgery, 4(4), 387–390. https://doi.org/10.1016/S0363-5023(79)80083-0
  10. Norman, D. A. & Draper, S. W. (1986). User Centered System Design; New Perspectives on Human-Computer Interaction. Lawrence Erlbaum Associates. Hilsdale, New Jersey and London.
  11. Phillips, B., & Zhao, H. (1993). Predictors of Assistive Technology Abandonment. Assistive Technology, 5(1), 36–45. https://doi.org/10.1080/10400435.1993.10132205
  12. Readioff, R., Siddiqui, Z. K., Stewart, C., Fulbrook, L., O'Connor, R. J., & Chadwick, E. K. (2022). Use and evaluation of assistive technologies for upper limb function in tetraplegia. The Journal of Spinal Cord Medicine, 45(6), 809–820. https://doi.org/10.1080/10790268.2021.1878342
  13. Rehabilitation Laboratory ETH Zürich. (2024). Retrieved from https://relab.ethz.ch/downloads/open-hardware/MiAssiSt.html
  14. Robertson, & Simonsen. (2013). Routledge international handbook of participatory design. Routledge.
  15. Scherer, M. J., & Federici, S. (2015). Why people use and don't use technologies: Introduction to the special issue on assistive technologies for cognition/cognitive support technologies. NeuroRehabilitation, 37(3), 315–319. https://doi.org/10.3233/NRE-151264
  16. Scherer, M. J., & Glueckauf, R. (2005). Assessing the Benefits of Assistive Technologies for Activities and Participation. Rehabilitation Psychology, 50(2), 132–141. https://doi.org/10.1037/0090-5550.50.2.132
  17. Shneiderman, B. (2019). The Growth of HCI and User Interface/Experience Design: Presented as a Tire-Tracks Diagram. In: Encounters with HCI Pioneers. Synthesis Lectures on Human-Centered Informatics. Springer, Cham. https://doi.org/10.1007/978-3-031-02224-1_2
  18. Snoek, G., IJzerman, M., in 't Groen, F. et al. (2000) Use of the NESS Handmaster to restore handfunction in tetraplegia: clinical experiences in ten patients. Spinal Cord 38, 244–249. https://doi.org/10.1038/sj.sc.3100980
  19. Spooren, A. I., Janssen-Potten, Y. J., Kerckhofs, E., & Seelen, H. A. (2009). Outcome of motor training programmes on arm and hand functioning in patients with cervical spinal cord injury according to different levels of the ICF: a systematic review. Journal of Rehabilitation Medicine, 41(7), 497–505. https://medicaljournalssweden.se/jrm/article/view/18074
  20. World Health Organization. (2024). Spinal cord injury. https://www.who.int/news-room/fact-sheets/detail/spinal-cord-injury
Language: English, German
Page range: 173 - 186
Submitted on: Jul 31, 2025
|
Accepted on: Oct 29, 2025
|
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 C. Bischofberger, R. Rätz, G. Gruener, A.M. Raab, published by ZHAW Zurich University of Applied Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.