Have a personal or library account? Click to login
MD-YOLOV12: Two-Stage Feature Injection for Robust Tool Wear Detection Cover
By: Jiaxin Cao and  Yu Bai  
Open Access
|Dec 2025

References

  1. Suh S H, Kang S K, Chung D H, et al. Theory and design of CNC systems[M]. London: Springer London, 2008.
  2. Liang S Y, Dornfeld D A. Tool wear detection using time series analysis of acoustic emission[J]. 1989.
  3. Xu X W, Newman S T. Making CNC machine tools more open, interoperable and intelligent—a review of the technologies [J]. Computers in Industry, 2006, 57(2): 141-152.
  4. Lin T Y, Maire M, Belongie S, et al. Microsoft coco: Common objects in context[C]//European conference on computer vision. Cham: Springer International Publishing, 2014: 740-755.
  5. Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 779-788.
  6. Kleijnen J P C. Validation of models: statistical techniques and data availability[C]//Proceedings of the 31st conference on winter simulation: Simulation---a bridge to the future-volume 1. 1999: 647-654.
  7. Liu X, Zhang F, Hou Z, et al. Self-supervised learning: Generative or contrastive[J]. IEEE transactions on knowledge and data engineering, 2021, 35(1): 857-876.
  8. Caron M, Touvron H, Misra I, et al. Emerging properties in self-supervised vision transformers[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 9650-9660.
  9. Zhang L, Song J, Gao A, et al. Be your own teacher: Improve the performance of convolutional neural networks via self distillation[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2019: 3713-3722.
  10. Siméoni O, Vo H V, Seitzer M, et al. Dinov3[J]. arXiv preprint arXiv:2508.10104, 2025.
  11. Dao T, Gu A. Transformers are ssms: Generalized models and efficient algorithms through structured state space duality[J]. arXiv preprint arXiv:2405.21060, 2024.
  12. Tian Y, Ye Q, Doermann D. Yolov12: Attention-centric real-time object detectors[J]. arXiv preprint arXiv:2502.12524, 2025.
  13. Hamilton J D. State-space models[J]. Handbook of econometrics, 1994, 4: 3039-3080.
  14. Yue Y, Finley T, Radlinski F, et al. A support vector method for optimizing average precision[C]//Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval. 2007: 271-278.
  15. Paszke A, Gross S, Massa F, et al. Pytorch: An imperative style, high-performance deep learning library[J]. Advances in neural information processing systems, 2019, 32.
  16. Redmon J, Farhadi A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.
  17. Zhang Y, Guo Z, Wu J, et al. Real-time vehicle detection based on improved yolo v5[J]. Sustainability, 2022, 14(19): 12274.
  18. Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023: 7464-7475.
  19. Wang C, He W, Nie Y, et al. Gold-YOLO: Efficient object detector via gather-and-distribute mechanism[J]. Advances in Neural Information Processing Systems, 2023, 36: 51094-51112.
  20. Sohan M, Sai Ram T, Rami Reddy C V. A review on yolov8 and its advancements[C]//International Conference on Data Intelligence and Cognitive Informatics. Springer, Singapore, 2024: 529-545.
  21. Wang A, Chen H, Liu L, et al. Yolov10: Real-time end-to-end object detection [J]. Advances in Neural Information Processing Systems, 2024, 37: 107984-108011.
Language: English
Page range: 104 - 111
Published on: Dec 31, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Jiaxin Cao, Yu Bai, published by Xi’an Technological University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.