References
- 1. Abreu, M. T., 2010: Toll-like receptor signalling in the intestinal epithelium: How bacterial recognition shapes intestinal function. Nat. Rev. Immunol., 10, 131—144. DOI: 10.1038/nri2707.10.1038/nri270720098461
- 2. Abriouel, H., Muñoz, M. C. C., Lerma, L. L., Montoro, B. P., Bockelmann. W., Pichner, R., et al., 2015: New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Res. Int., 78, 465—481. DOI: 10.1016/j.foodres.2015.09.016.10.1016/j.foodres.2015.09.01628433315
- 3. Belkaid, Y., Naik, S., 2013: Compartmentalized and systemic control of tissue immunity by commensals. Nat. Immunol., 14, 646—653. DOI: 10.1038/ni.2604.10.1038/ni.2604384500523778791
- 4. Bercik, P., Verdu, E. F., Foster, J. A., Macri, J., Potter, M., Huang, X., et al., 2010: Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology, 139, 2102— 2112. DOI: 10.1053/j.gastro.2010.06.063.10.1053/j.gastro.2010.06.06320600016
- 5. Bermudez-Brito, M., Plaza-Diaz, J., Muňoz-Quezdala, S., Gómez-llorente, C., Gil, A., 2012: Probiotic mechanisms of action. Ann. Nutr. Metab., 61, 160—174. DOI: 10.1159/000342079.10.1159/00034207923037511
- 6. Bobíková, K., Revajová, V., Karaffová, V., Levkutová, M., Levkut, M., 2015: IgA gene expression and quantification of cecal IgA+, IgM+, and CD4+ cells in chickens treated with EFAL41 and infected with Salmonella Enteritidis. Acta Histochem., 117, 629—634. DOI: 10.1016/j.acthis.2015.06.004.10.1016/j.acthis.2015.06.00426093882
- 7. Campos, C. A., Gerschenson, L. N., Flores, S. K., 2011: Development of edible films and coatings with antimicrobial activity. Food and Bioprocess Technol., 4, 849—875. DOI: 10.1007/s11947-010-0434-1.10.1007/s11947-010-0434-1
- 8. Capuron, L., Miller, A. H., 2011: Immune system to brain signaling: neuropsychopharmacological implications. Pharmacology and Therapeutics, 130, 226—238. DOI: 10.1016/j.pharmthera.2011.01.014.10.1016/j.pharmthera.2011.01.014307229921334376
- 9. Clifford, A., 2010: The probiotic paradox: live and dead cells are biological response modifiers. Nutr. Res. Rev., 23, 1, 37—46. DOI: 10.1017/S0954422410000090.10.1017/S095442241000009020403231
- 10. Corthésy, B., 2009: Secretory immunoglobulin A: well beyond immune exclusion at mucosal surfaces. Immunopharm. Immunotoxicol., 31, 2, 174—179. DOI: 10.1080/08923970802438441.10.1080/0892397080243844119514992
- 11. Corthésy, B., 2013: Multi-faceted functions of secretory IgA at mucosal surfaces. Front. Immunol., 4, 185, 1—11. DOI: 10. 3389/fimmu.2013.00185.10.3389/fimmu.2013.00185370941223874333
- 12. Das, A., Ray, S., Raychaudhuri, U., Chakraborty, R., 2014: Microencapsulation of probiotic bacteria and its potential application in food technology. Int. J. Agric. Environ. Biotechnol., 6, 1, 63—69. DOI: 10.5958/j.2230-732X.7.1.007.10.5958/j.2230-732X.7.1.007
- 13. Dantzer, R., Heijnen, C. J., Kavelaars, A., Laye, S., Capuron, L., 2014: The neuroimmune basis of fatigue. Trends in Neuroscience, 37, 1, 39—46. DOI: 10.1016/j.tins.2013.10.003.10.1016/j.tins.2013.10.003388970724239063
- 14. D’Mello, C., Riazi, K., Le, T., Stevens, K. M., Wang, A., McKay, D. M., et al., 2013: P-selectin-mediated monocyte-cerebral endothelium adhesive interactions link peripheral organ inflammation to sickness behaviors. J. Neurosci., 33, 14878—14888. DOI: 10.1523/JNEUROSCI.1329-13.2013.10.1523/JNEUROSCI.1329-13.2013670516524027287
- 15. D’Mello, C., Swain, M. G., 2014: Liver-brain interactions in inflammatory liver diseases: implications for fatigue and mood disorders. Brain, Behav. Immun., 35, 9—20. DOI: 10.1016/j.bbi.2013.10.009.10.1016/j.bbi.2013.10.00924140301
- 16. D’Mello, Ch., Ronaghan, N., Zaheer, R., Dicay, M., Le, T., MacNaughton, W. K., et al., 2015: Probiotics improve inflammation-associated sickness behavior by altering communication between the peripheral immune system and the brain. J. Neurosci., 35, 30, 10821—10830. DOI: 10.1523/JNEUROSCI.0575-15.2015.10.1523/JNEUROSCI.0575-15.2015660511226224864
- 17. EFSA. Scientifc Oopinion on the Maintenance of the List of QPS Biological Agents Intentionally Added to Food and Feed, 2013: EFSA J., 3449, 1—108. DOI: 10.2903/j.efsa.2013.3449.10.2903/j.efsa.2013.3449
- 18. EFSA. Scientifc Opinion on the Update of the List of QPS-recommended Biological Agents Intentionally Added to Food or Feed as Notifed to EFSA, 2017: EFSA J., 15, 3, 1—177. DOI: 10.2903/j.efsa.2017.4664.10.2903/j.efsa.2017.4664701010132625421
- 19. FAO. Guidelines for the Evaluation of Probiotics in Food, 2002: Report of a Joint FAO/WHO Working Group on Drafting Gidelines for the Evaluation of Probiotics in Food. 30.04—01.05.2002, London, Ontario, Kanada. https://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf.
- 20. Flach, J., van der Waal, M. B., van den Nieuwboer, M., Claassen, E., Larsen, O. F. A., 2018: The underexposed role of food matrices in probiotic products: Reviewing the relationship between carrier matrices and product parameters. Crit. Rev. Food Sci. Nutr., 58, 15, 2570—2584. DOI: 10.1080/10408398.2017.1334624.10.1080/10408398.2017.133462428609116
- 21. Gaggia, F., Mattarelli, P., Biavati, B., 2010: Probiotics and prebiotics in animal feeding for safe food production. Int. J. Food Microbiol., 141, 15—28. DOI: 10.1016/j.ijfoodmicro.2010.02.031.10.1016/j.ijfoodmicro.2010.02.03120382438
- 22. Gaucher, F., Bonnassie, S., Rabah, H., Marchand, P., Blanc, P., Jeantet, R., Jan, G., 2019: Review: Adaptation of beneficial propionibacteria, lactobacilli, and bifidobacteria improves tolerance toward technological and digestive stresses. Front. Microbiol., 10, 41. DOI: 10.3389/fmicb.2019.00841.10.3389/fmicb.2019.00841
- 23. Gorbach, S. L., 2000: Probiotics and gastrointestinal health. Am. J. Gastroenterol., 95, 1, 2—4. DOI: 10.1016/s0002-9270(99)00806-0.10.1016/s0002-9270(99)00806-0
- 24. Hemarajata, P, Versalovic, J., 2013: Effects of probiotics on gut microbiota: mechanisms of intestinal immunodulation and neuromodulation. Therap. Adv. Gastroenterol., 6, 39—51. DOI: 10.1177/1756283X12459294.10.1177/1756283X12459294353929323320049
- 25. Herich, R., 2017: Is the role of IgA in local immunity completely known ? Food Agric. Immunol., 28, 2, 223—237. DOI: 10.1080/09540105.2016.1258547.10.1080/09540105.2016.1258547
- 26. Chandramouli, V., Kalasapathy, K., Peiri, P., Jones, M., 2004: An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. In simulated gastric conditions. J. Microbiol. Methods, 56, 27—35. DOI: 10.1016/j.mimet.2003.09.00.2.10.1016/j.mimet.2003.09.00.2
- 27. Islam, M. A., Yun, C. H., Choi, Y. J., Cho, C. S., 2010: Microencapsulation of live probiotic bacteria. J. Microbiol. Biotechnol., 20, 10, 1367–77. DOI: 10.4014/jmb.1003.03020.10.4014/jmb.1003.0302021030820
- 28. Isolauri, E., Salminen, S., Ouwehand, A. C., 2004: Microbial-gut interactions in health and disease. Probiotics. Best Practice and Research: Clinical Gastroenterology, 18, 299—313. DOI: 10.1016/j.bpg.2003.10.006.10.1016/j.bpg.2003.10.00615123071
- 29. Joseph, J. M., Law, C., 2019: Cross-species examination of single- and multi-strain probiotic treatment effects on neuro-psychiatric outcomes. Neurosci. Biobehav. Rev., 99, 160—197. DOI: 10.1016/j.neubiorev.2018.11.010.10.1016/j.neubiorev.2018.11.010660164330471308
- 30. Karaffová, V., Marcinková, E., Bobíková, K., Herich, R., Revajová, V., Stašová, D., et al., 2017: TLR4 and TLR21 expression, MIF, IFN-β, MD-2, CD14 activation, and sIgA production in chickens administered with EFAL41 strain challenged with Campylobacter jejuni. Folia Microbiologica, 62, 89—97. DOI: 10.1007/s12223-016-0475-6.10.1007/s12223-016-0475-627696326
- 31. Kataria, J., Li, N., Wynn, J. L., Neu, J., 2009: Probiotic microbes: do they need to be alive to be beneficial ? Nutr. Rev., 67, 9, 546—550. DOI: 10.1111/j.1753-4887.2009.00226.x.10.1111/j.1753-4887.2009.00226.x19703261
- 32. Kaur, I. P., Chopra, K., Saini, A., 2002: Probiotics: potential pharmaceutical applications. Eur. J. Pharm. Sci., 15, 1, 1—9. DOI: 10.1016/s0928-0987(01)00209-3.10.1016/s0928-0987(01)00209-3
- 33. Lauková, A., Chrastinová, Ľ., Simonová, M.P., Strompfová, V., Plachá, I., Čobanová, K., et al., 2012:Enterococcus faecium AL 41: Its enterocin M and their beneficial use in rabbits husbandry. Probiotics Antimicro. Proteins, 4, 243—249. DOI: 10.1007/s12602-012-9118-7.10.1007/s12602-012-9118-726782184
- 34. Lauková, A., Pogány Simonová, M., Kubašová, I., Gancarčíková, S., Plachá, I., Imrichová Ščerbová, J., et al., 2017: Pilot experiment in chickens challenged with Campylobacter jejuni CCM6191 administered enterocin M-producing probiotic strain Enterococcus faecium CCM8558 to check its protective effect. Czech J. Anim. Sci., 62, 11, 491—500. DOI: 10.17221/12/2017-cjas.10.17221/12/2017-CJAS
- 35. Lauková, A., Kandričáková, A., Ščerbová, J., Szabóová, R., Plachá, I., Čobanová, K., et al., 2017b: In vivo model experiment using laying hens treated with Enterococcus faecium EM41 from ostrich faeces and its enterocin EM41. Mac. Vet. Rev., 40, 2, 157—166. DOI: 10.1515/macvetrev-2017-0024.10.1515/macvetrev-2017-0024
- 36. Lauková, A., Styková, E., Kubašová, I., Gancarčíková, S., Plachá, I., Mudroňová, D., et al., 2018: Enterocin M and its beneficial effects in horses—a pilot experiment. Probiotics Antimicro. Proteins, 10, 3, 420—426. DOI: 10.1007/s12602-018-9390-2.10.1007/s12602-018-9390-229417475
- 37. Lemme-Dumit, J. M., Polti, M. A., Perdigón, G., Galdeano, C. M., 2018: Probiotic bacteria cell walls stimulate the activity of the intestinal epithelial cells and macrophage functionality. Beneficial Microbes, 9, 1, 153—164. DOI: 10.3920/BM2016.0220.10.3920/BM2016.022029124968
- 38. Letnická, A., Karaffová, V., Levkut, M., Revajová, V., Herich, R., 2017: Influence of oral application of Enterococcus faecium AL41 on TGF-ß4 and IL-17 expression and immunocompetent cell distribution in chickens challenged with Campylobacter jejuni. Acta Vet. Hung., 65, 3, 317—326. DOI: 10.1556/004.2017.031.10.1556/004.2017.03128956488
- 39. Levkut, M., Pistl, J., Lauková, A., Revajová, V., Herich, R., Ševčíková, Z., et al., 2009: Antimicrobial activity of Enterococcus faecium EF 55 against Salmonella Enteritidis in chicks. Acta Vet. Hung., 57, 1, 13—24. DOI: 10.1556/AVet.57.2009.1.2.10.1556/AVet.57.2009.1.219457770
- 40. Macpherson, A. J., McCoy, K. D., Johansen, F. E., Brandtzaeg, P., 2008: The immune geography of IgA induction and function. Mucosal Immunol., 1, 11—22. DOI: 10.1038/mi.2007.6.10.1038/mi.2007.619079156
- 41. Maldonado, G. C., Cazorla, S. I., Lemme Dumit, J. M., Vélez, E., Perdigón, G., 2019: Beneficial effects of probiotic consumption on the immune system. Ann. Nutr. Metab., 74, 2, 115—124. DOI: 10.1159/000496426.10.1159/00049642630673668
- 42. Mareková, M., Lauková, A., Skaugen, M., Nes, I., 2007: Isolation and characterization of a new bacteriocin, termed enterocin M, produced by environmental isolate Enterococcus faecium AL41. J. Indust. Microbiol. Biotechnol., 34, 8, 533— 537. DOI: 10.1007/s10295-007-0226-4.10.1007/s10295-007-0226-4
- 43. Markowiak, P., Slizewska, K., 2017: Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 9, 9, 1021. DOI: 10.3390/nu9091021.10.3390/nu9091021
- 44. Messaoudi, M., Lalonde, R., Violle, N., Javelot, H., Desor, D., Nejdi, A., et al., 2011: Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr., 105, 755—764. DOI: 10.1017/S0007114510004319.10.1017/S0007114510004319
- 45. Miron, N., Cristea, V., 2012: Enterocytes: active cells in tolerance to food and microbial antigens in the gut. Clin. Exper. Immunol., 167, 3, 405—412. DOI: 10.1111/j.1365-2249.2011.04523.x.10.1111/j.1365-2249.2011.04523.x
- 46. Mizak, L., Gryko, R., Kwiatek, M., 2012: Probiotics in animal nutrition (In Polish). Życie Weterynaryjne, 87, 9, 736— 741. http://support-pharma.pl/wp-content/uploads/2016/09/ZW_2012-09_02.pdf.
- 47. Nami, Y., Haghshenas, B., Haghshenas, M., Khosroushahi, A. Y., 2015: Antimicrobial activity and the presence of virulence factors and bacteriocin structural genes in Enterococcus faecium CM33 isolated from ewe colostrum. Front. Microbiol., 6, 782. DOI: 10.3389/fmicb.2015.00782.10.3389/fmicb.2015.00782
- 48. Ng, S. C., Hart, A. L., Kamm, M. A., Stagg, A. J., Knight, S. C., 2009: Mechanisms of action of probiotics: recent advances. Inflam. Bowel Dis., 15, 300–310. DOI: 10.1002/ibd.20602.10.1002/ibd.20602
- 49. Oelschlaeger, T. A., 2010: Mechanisms of probiotic action— A review. Int. J. Med. Microbiol., 300, 1, 57—62. DOI: 10.1016/j.ijmm.2009.08.005.10.1016/j.ijmm.2009.08.005
- 50. Piskoríková., M., 2010: Quality and characterization of existing and new probiotics (EFSA QPS). In Proceedings of Rregulatory Framework Workshop Health Claim Approval of Probiotics in the European Union Issues, Barriers, Success Drivers, 18 June, Košice.
- 51. Reuter, G., 2001: Probiotics-possibilities and limitations of their application in food, animal feed, and in pharmaceutical preparations for men and animals. Berl. Munch. Tierarztl. Wochenschr., 114, 11—12, 410—419.
- 52. Sandholm, M., Myllarinen, T., Crittenden, R., Mogensen, G., Fonden, R., Saarela, M., 2005: Technological challenges for future probiotic food. Int. Dairy J., 12, 173—182. DOI: 10.1016/s0958-6946(01)00099-1.10.1016/s0958-6946(01)00099-1
- 53. Sansonetti, P. J., 2004: War and peace at mucosal surfaces. Nat. Rev. Immunol., 4, 953—964. DOI: 10.1038/nri1499.10.1038/nri149915573130
- 54. Simon, O., 2005: Microorganisms as feed additives—probiotics. Advances of Pork Production, 16, 161—167. https://pdfs.semanticscholar.org/b6cc/69c328880e44a89075d6e4583c403361fa20.pdf.
- 55. Smith, C. J., Emge, J. R., Berzins, K., Lung, L., Khamishon, R., Shah, P., et al., 2014: Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice. Am. J. Physiol. Gastrointest. Liver Physio., 307, 8, 793—802. DOI: 10.1152/ajpgi.00238.2014.10.1152/ajpgi.00238.2014420031425190473
- 56. Strompfová, V., Kubašová, I., Farbáková, J., Maďari, A., Gancarčíková, S., Mudroňová, D., Lauková, A., 2018: Evaluation of probiotic Lactobacillus fermentum CCM 7421 administration with alginite in dogs. Probiotics and Antimicro. Proteins, 10, 3, 577—588. DOI: 10.1007/s12602-017-9370-y.10.1007/s12602-017-9370-y29256151
- 57. Szabóová, R., Chrastinová, Ľ., Lauková, A., Haviarová, M., Simonová, M., Strompfová, V., et al., 2008: Bacteriocin-producing strain Enterococcus faecium CCM4231 and its use in rabbits. Int. J. Probiotics Prebiotics, 3, 2, 77—82.
- 58. Szabóová, R., Lauková, A., Chrastinová, Ľ., Strompfová, V., Pogány Simonová, M., Vasilková, Z., et al., 2011: Effect of combined administration of enterocin 4231 and sage in rabbits. Polish J. Vet. Sci., 14, 3, 359—366. DOI: 10.2478/v10181-011-0054-3.10.2478/v10181-011-0054-321957728
- 59. Szabóová, R., Faixová, Z., Maková, Z., Piešová, E., 2018: The difference in the mucus organization between the small and large intestine and its protection od selected natural substances. A review. Folia Veterinaria, 62, 4, 48—55. DOI: 10.2478/fv-2018-0031.10.2478/fv-2018-0031
- 60. Šefcová, M., Levkut, M., Bobíková, K., Karaffová, V., Revajová, V., Maruščáková, I. C., et al., 2019: Cytokine response after stimulation of culture cells by zinc and probiotic strain. In Vitro Cell. Dev. Biol. Anim. DOI: s11626-019-00401-z, https://link.springer.com/article/10.1007%2Fs11626-019-00401-z.
- 61. Ševčíková, Z., Blanár, J., Lauková, A., Revajová, V., Strompfová, V., Levkut, M., 2016: Effect of Enterococcus faecium EF 55 on morphometry and proliferative activity of intestinal mucosa in broilers infected with Salmonella Enteritidis. J. Vet. Res. (Poland), 60, 3, 261–265. DOI: 10.1515/jvetres-2016-0040.10.1515/jvetres-2016-0040
- 62. Tillisch, K., Labus, J., Kilpatrick, L., Jiang, Z., Stains, J., Ebrat, B., et al., 2013: Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology, 144, 1394—1401. DOI: 10.1053/j.gastro.2013.02.043.10.1053/j.gastro.2013.02.043383957223474283
- 63. Tiwari, G., Tiwari, R., Pandey, S., Pandey, P., 2012: Promising future of probiotics for human health: Current Scenario. Chronicles of Young Scientists, 3, 1, 17—28.10.4103/2229-5186.94308
- 64. Vias, U., Ranganathan, N., 2012: Probiotics, prebiotics, and synbiotics: Gut and beyond. Gastroent. Res. Pract., 2012, 16 pp. DOI: 10.1155/2012/872716.10.1155/2012/872716345924123049548
- 65. Vidhyalakshmi, R., Bhakyaraj, R., Subhasree, R. S., 2009: Encapsulation “The future of probiotics”—A review. Adv. Biol. Res., 3, 3—4, 96—103. https://pdfs.semanticscholar.org/70e2/4edc72958a62b5ffc6fc6f8a187c3e5133e6.pdf.
- 66. Wang, S., Li, H., Du, C., Liu, Q., Yang, D., Chen, L., et al., 2018: Effects of dietary supplementation with Lactobacillus acidophilus on the performance, intestinal physical barrier function, and the expression of NOD-like receptors in weaned piglets. Peer J., 6, 6060. DOI: 10.7717/peerj.6060.10.7717/peerj.6060630278130588399
- 67. Wells, J. M., Rossi, O., Meijerink, M., van Baarlen, P., 2011: Epithelial crosstalk at the microbiota-mucosal interface. Proc. Nat. Academy Sci. USA, 108, 1, 4607—4614. DOI: 10.1073/pnas.1000092107.10.1073/pnas.1000092107306360520826446
- 68. Xu, X., Luo, D., Bao, Y., Liao, X., Wu, J., 2018: Characterization of diversity and probiotic efficiency of the autochthonous lactic acid bacteria in the fermentation of selected raw fruit and vegetable juices. Front. Microbiol., 9, 2539. DOI: 10.3389/fmicb.2018.02539.10.3389/fmicb.2018.02539620599230405588
