Have a personal or library account? Click to login
Investigating the Effects of PU-Based Back-Coating with Boric Acid and Titanium Dioxide Additives on Flame Retardancy Levels and Comfort Properties of 100% Cotton Denim Fabric Cover

Investigating the Effects of PU-Based Back-Coating with Boric Acid and Titanium Dioxide Additives on Flame Retardancy Levels and Comfort Properties of 100% Cotton Denim Fabric

Open Access
|Oct 2024

References

  1. Adamu BF. Permeability and Moisture Management Properties of Denim Fabric Made from Cotton, Spandex, and Polyester. J Inst Eng India Ser E 2022;103:253–8. https://doi.org/10.1007/s40034-022-00249-1.
  2. Becenen N, Eyi G. Investigation of the flammability properties of a cotton and elastane blend denim fabric in the presence of boric acid, borax, and nano-SiO2. J Text Inst 2021;112:1080–92. https://doi.org/10.1080/00405000.2020.1800974.
  3. Periyasamy AP, Militky J. Denim and consumers’ phase of life cycle. In: Muthu SS, editor. Sustain. Denim, Sawston: Woodhead; 2017, p. 257–82. https://doi.org/10.1016/B978-0-08-102043-2.00010-1.
  4. Becenen N, Erdoğan S. Chitosan and nano-TiO2 coating improves the flame retardancy of dyed and undyed denim fabrics by increasing the charring. J Ind Text 2022;51:1252S–1278S. https://doi.org/10.1177/15280837221099632.
  5. Talebi S, Montazer M. Denim Fabric with Flame retardant, hydrophilic and self-cleaning properties conferring by in-situ synthesis of silica nanoparticles. Cellulose 2020;27:6643–61. https://doi.org/10.1007/s10570-020-03195-6.
  6. Liu Y, Wang X, Qi K, Xin JH. Functionalization of cotton with carbon nanotubes. J Mater Chem 2008;18:3454–60. https://doi.org/10.1039/b801849a.
  7. Javed A, Wiener J, Saskova J, Müllerová J. Zinc Oxide Nanoparticles (ZnO NPs) and N-Methylol Dimethyl Phosphonopropion Amide (MDPA) System for Flame Retardant Cotton Fabrics. Polymers 2022;14:3414. https://doi.org/10.3390/polym14163414.
  8. Ling C, Guo L, Wang Z. A review on the state of flame-retardant cotton fabric: Mechanisms and applications. Ind Crops Prod 2023;194:116264. https://doi.org/10.1016/j.indcrop.2023.116264.
  9. Zhang K, Zong L, Tan Y, Ji Q, Yun W, Shi R, et al. Improve the flame retardancy of cellulose fibers by grafting zinc ion. Carbohydr Polym 2016;136:121–7. https://doi.org/10.1016/j.carbpol.2015.09.026.
  10. Abed A, Bouazizi N, Giraud S, El Achari A, Campagne C, Vieillard J, et al. Functional Cotton Fabric: Enhancement in Flame Retardancy and Thermal Stability. Int J Nanoparticles Nanotechnol 2020;6:1–13. https://doi.org/10.35840/2631-5084/5537.
  11. Attia N, Ahmed H, Yehia D, Hassan M, Zaddin Y. Novel synthesis of nanoparticles-based back coating flame-retardant materials for historic textile fabrics conservation. J Ind Text 2017;46:1379–92. https://doi.org/10.1177/1528083715619957.
  12. Wang Q, Undrell JP, Gao Y, Cai G, Buffet J-C, Wilkie CA, et al. Synthesis of Flame-Retardant Polypropylene/LDH-Borate Nanocomposites. Macromolecules 2013;46:6145–50. https://doi.org/10.1021/ma401133s.
  13. Zhou C, Zhou S, You F, Wang Z, Li D, Li G, et al. Effectively improving flame retardancy levels of finished cotton fabrics only by simple binary silicon-boron oxide sols. J Polym Res 2023;30:437. https://doi.org/10.1007/s10965-023-03812-5.
  14. Akarslan F. Investigation on Fire Retardancy Properties of Boric Acid Doped Textile Materials. Acta Phys Pol A 2015;128:B-403–B-405. https://doi.org/10.12693/APhysPolA.128.B-403.
  15. Qiu X, Li Z, Li X, Zhang Z. Flame retardant coatings prepared using layer by layer assembly: A review. Chem Eng J 2018;334:108–22. https://doi.org/10.1016/j.cej.2017.09.194.
  16. Duan H, Li J, Gu J, Lu L, Qi D. Onepot preparation of cotton fibers with simultaneous enhanced durable flame-retardant and antibacterial properties by grafting copolymerized with vinyl monomers. React Funct Polym 2022;181:105438. https://doi.org/10.1016/j.reactfunctpolym.2022.105438.
  17. Ayesh M, Horrocks AR, Kandola BK. The Effect of Combined Atmospheric Plasma/UV Treatments on Improving the Durability of Flame Retardants Applied to Cotton. Molecules 2022;27:8737. https://doi.org/10.3390/molecules27248737.
  18. Bentis A, Boukhriss A, Gmouh S. Flame-retardant and water-repellent coating on cotton fabric by titania–boron sol–gel method. J Sol-Gel Sci Technol 2020;94:719–30. https://doi.org/10.1007/s10971-020-05224-z.
  19. Zope IS, Foo S, Seah DGJ, Akunuri AT, Dasari A. Development and Evaluation of a Water-Based Flame Retardant Spray Coating for Cotton Fabrics. ACS Appl Mater Interfaces 2017;9:40782–91. https://doi.org/10.1021/acsami.7b09863.
  20. Nosaka T, Lankone R, Westerhoff P, Herckes P. Flame retardant performance of carbonaceous nanomaterials on polyester fabric. Polym Test 2020;86:106497. https://doi.org/10.1016/j.polymertesting.2020.106497.
  21. Bhuiyan MAR, Wang L, Shanks RA, Ding J. Polyurethane–superabsorbent polymer-coated cotton fabric for thermophysiological wear comfort. J Mater Sci 2019;54:9267–81. https://doi.org/10.1007/s10853-019-03495-8.
  22. Bhuiyan MAR, Wang L, Anjuman Ara Z, Saha T, Wang X. Omniphobic polyurethane – superabsorbent polymer – fluoropolymer surface coating on cotton fabric for chemical protection and thermal comfort. J Ind Text 2022;51:6590S–6611S. https://doi.org/10.1177/15280837221078535.
  23. Liang S, Neisius NM, Gaan S. Recent developments in flame retardant polymeric coatings. Prog Org Coat 2013;76:1642–65. https://doi.org/10.1016/j.porgcoat.2013.07.014.
  24. Ortelli S, Malucelli G, Cuttica F, Blosi M, Zanoni I, Costa AL. Coatings made of proteins adsorbed on TiO2 nanoparticles: a new flame retardant approach for cotton fabrics. Cellulose 2018;25:2755–65. https://doi.org/10.1007/s10570-018-1745-z.
  25. Horrocks AR. Overview of traditional flame retardant solutions including coating and back-coating technologies. In: Alongi J, Horrocks AR, Carosio F, Malucelli G, editors. Update Flame Retard. Text. State Art Environ. Issues Innov. Solut., Shawburry, UK: Smithers Rapra; 2013, p. 123–78.
  26. Özer MS, Wesemann M-J, Gaan S. Flame retardant back-coated PET fabric with DOPO-based environmentally friendly formulations. Prog Org Coat 2023;175:107363. https://doi.org/10.1016/j.porgcoat.2022.107363.
  27. Yao Z, Liu X, Qian L, Chen Y, Xu B, Qiu Y. Synthesis and Characterization of Aluminum 2-Carboxyethyl-Phenyl-Phosphinate and Its Flame-Retardant Application in Polyester. Polymers 2019;11:1969. https://doi.org/10.3390/polym11121969.
  28. Sun Y, Liu C, Hong Y, Liu R, Zhou X. Synthesis and application of self-crosslinking and flame retardant waterborne polyurethane as fabric coating agent. Prog Org Coat 2019;137:105323. https://doi.org/10.1016/j.porgcoat.2019.105323.
  29. Gite VV, Mahulikar PP, Hundiwale DG. Preparation and properties of polyurethane coatings based on acrylic polyols and trimer of isophorone diisocyanate. Prog Org Coat 2010;68:307–12. https://doi.org/10.1016/j.porgcoat.2010.03.008.
  30. Havlova M. Air Permeability, Water Vapour Permeability And Selected Structural Parameters Of Woven Fabrics. Fibres Text 2020;27:12–8.
  31. Eryuruk SH. The effects of elastane and finishing properties on wicking, drying and water vapour permeability properties of denim fabrics. Int J Cloth Sci Technol 2019;32:208–17. https://doi.org/10.1108/IJCST-01-2019-0003.
  32. Gültekin E, Çelik Hİ, Nohut S, Elma SK. Predicting air permeability and porosity of nonwovens with image processing and artificial intelligence methods. J Text Inst 2020;111:1641–51. https://doi.org/10.1080/00405000.2020.1727267.
  33. Berkalp ÖB. Air Permeability & Porosity in Spun-laced Fabrics. Fibres Text East Eur 2006;14:81–5.
  34. Güneşoğlu S. The statistical investigation of the effect of hydrophilic polyurethane coating on various properties of denim fabric. Tekst Ve Konfeksiyon 2015;25:256–62.
  35. Mondal S, Hu JL. A novel approach to excellent UV protecting cotton fabric with functionalized MWNT containing water vapor permeable PU coating. J Appl Polym Sci 2007;103:3370–6. https://doi.org/10.1002/app.25437.
  36. Ozen I. Multi-layered Breathable Fabric Structures with Enhanced Water Resistance. J Eng Fibers Fabr 2012;7:63–9. https://doi.org/10.1177/155892501200700402.
  37. Lubnin A, Anderle G, Snow G, Varn R, Lenhard S. Novel, “breathable” polyurethane dispersions. Paint Coat Ind 2005;21:26–35.
  38. Wei B, Xu F, Azhar SW, Li W, Lou L, Liu W, et al. Fabrication and property of discarded denim fabric/polypropylene composites. J Ind Text 2015;44:798–812. https://doi.org/10.1177/1528083714550055.
  39. Hu X, Tian M, Qu L, Zhu S, Han G. Multifunctional cotton fabrics with graphene/polyurethane coatings with far-infrared emission, electrical conductivity, and ultraviolet-blocking properties. Carbon 2015;95:625–33. https://doi.org/10.1016/j.carbon.2015.08.099.
  40. Potočić Matković VM, Čubrić IS, Skenderi Z. Thermal resistance of polyurethane-coated knitted fabrics before and after weathering. Text Res J 2014;84:2015–25. https://doi.org/10.1177/0040517514537368.
  41. Gurudatt K, De P, Sarkar RK, Bardhan MK. Studies on Influence of Blowing Agent in Polymeric Coating Formulations on Thermal Resistance of Coated Textiles. J Ind Text 2001;31:103–22. https://doi.org/10.1106/LN83-8YPN-TAXA-MMMM.
  42. Abbas A, Zhao Y, Ali U, Lin T. Improving heat-retaining property of cotton fabrics through surface coatings. J Text Inst 2017;108:1808–14. https://doi.org/10.1080/00405000.2017.1292638.
  43. Souza JM, Sampaio S, Silva WC, De Lima SG, Zille A, Fangueiro R. Characterization of functional single jersey knitted fabrics using non-conventional yarns for sportswear. Text Res J 2018;88:275–92. https://doi.org/10.1177/0040517516677226.
  44. Mangat MM, Hes L. Comfort aspects of denim garments. In: Paul R, editor. Denim Manuf. Finish. Appl., Woodhead Publishing; 2015, p. 461–79. https://doi.org/10.1016/B978-0-85709-843-6.00015-9.
  45. Lewis DM, Hawkes JA, Hawkes L, Mama J. A new approach to flame-retardant cellulosic fabrics in an environmentally safe manner. Color Technol 2020;136:512–25. https://doi.org/10.1111/cote.12504.
  46. Younis AA. Evaluation of the flammability and thermal properties of a new flame retardant coating applied on polyester fabric. Egypt J Pet 2016;25:161–9. https://doi.org/10.1016/j.ejpe.2015.04.001.
  47. Martín C, Ronda JC, Cádiz V. Boron-containing novolac resins as flame retardant materials. Polym Degrad Stab 2006;91:747–54. https://doi.org/10.1016/j.polymdegradstab.2005.05.025.
  48. Poon C, Kan C. Effects of TiO2 and curing temperatures on flame retardant finishing of cotton. Carbohydr Polym 2015;121:457–67. https://doi.org/10.1016/j.carbpol.2014.11.064.
DOI: https://doi.org/10.2478/ftee-2024-0027 | Journal eISSN: 2300-7354 | Journal ISSN: 1230-3666
Language: English
Page range: 13 - 21
Published on: Oct 8, 2024
Published by: Łukasiewicz Research Network, Institute of Biopolymers and Chemical Fibres
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2024 Ebru Öztürkmen, Cem Güneşoğlu, Mehmet Topalbekiroğlu, published by Łukasiewicz Research Network, Institute of Biopolymers and Chemical Fibres
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.