Have a personal or library account? Click to login
Coupling Characteristics of Needles and Backing Cloth During the Carpet Tufting Process Cover

Coupling Characteristics of Needles and Backing Cloth During the Carpet Tufting Process

Open Access
|Sep 2022

References

  1. Meng, Z., Sun, J. J., Zhou, T. Z., & Gu, S. H. (2008). Research on the Influence that Stop Position of Carpet Tufting Machine to Yarn Tension and the Method of Elimination Stop Mark. Key Engineering Materials, 375–376, 724–728.
  2. Xue, S. (2003). Machine-made carpet. Beijing: Chemical Industry Press.
  3. Gotlih, K. (1997). Sewing needle penetration force study. International Journal of Clothing Science & Technology, 9 (3), 241–248.
  4. Haghighat, E., Etrati, S. M., & Najar, S. S. (2013). Modeling of needle penetration force in denim fabric. International Journal of Clothing Science & Technology, 25(25), 361–379.
  5. Haghighat, E., Etrati, S. M., Najar, S. S., & Shamsi, M. (2015). Theoretical prediction of the needle penetration force in denim fabric part 1: Yarn tensile extension component. International Journal of Clothing Science & Technology, 27(3), 397–416.
  6. Carvalho, H., Rocha, A. M., & Monteiro, J. L. (2009). Measurement and analysis of needle penetration forces in industrial high-speed sewing machine. Journal of the Textile Institute, 100(4), 319–329.
  7. Lomov, S. V. (1998). A predictive model for the penetration force of a woven fabric by a needle. International Journal of Clothing Science & Technology, 10(2), 91–103.
  8. Mallet, E., & Du, R. (2013). Finite element analysis of sewing process. International Journal of Clothing Science & Technology, 11(11), 19–36.
  9. Goda I., & Girardot J. (2021). Numerical modeling and analysis of the ballistic impact response of ceramic/composite targets and the influence of cohesive material parameters. International Journal of Damage Mechanics, 30(7):1079–1122.
  10. Elias A., Laurin F., Kaminski M. & Gornet L. (2017). Experimental and numerical investigations of low energy/velocity impact damage generated in 3D woven composite with polymer matrix. Composite Structures, 159, 228–239.
  11. Wu Z.Y., Zhang L. C., Ying Z.P., Ke J., & Hu X. D. (2020). Low-velocity impact performance of hybrid 3D carbon/glass woven orthogonal composite: Experiment and simulation. Composites Part B: Engineering, 196(1): 1–14.
  12. Haque B. Z., & Gillespie J. W. (2021). Perforation mechanics of UHMWPE soft ballistic sub-laminate and soft ballistic armor pack: A finite element study. Journal of thermoplastic composite materials, 1–29 (online).
  13. Zhang R., Qiang L. S., Han B., Zhao Z.Y., Zhang Q. C., Ni C. Y., & Lu T. J. (2020). Ballistic performance of uhmwpe laminated plates and uhmwpe encapsulated aluminum structures: numerical simulation. Composite Structures, 252: 112686.
  14. Yiping Shi, Y. Z. (2006). Finite element analysis of detailed examples using ABAQUS. Beijing: Mechanical Engineering Press.
  15. Wang, P., Ma, Q., & Sun, B. (2011). Finite element modelling of woven fabric tearing damage. Textile Research Journal, 81(12):1273–1286.
  16. Masoumeh V., Stepan L., & Sayed A. (2010). Finite element modeling of a yarn pullout test for plain woven fabrics. Textile Research Journal, 80(10):892–903.
  17. Ding, C. H., Zhang, S. P., & Sun, Y. Z. (2006). Kinematical analysis of the needle's driving mechanism within a carpet tufting machine. Journal of Textile Research, 27(5), 37–40.
DOI: https://doi.org/10.2478/ftee-2022-0017 | Journal eISSN: 2300-7354 | Journal ISSN: 1230-3666
Language: English
Page range: 9 - 17
Published on: Sep 28, 2022
Published by: Łukasiewicz Research Network, Institute of Biopolymers and Chemical Fibres
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2022 Yang Xu, Shuang Huang, Xiaowei Sheng, Sun Zhijun, published by Łukasiewicz Research Network, Institute of Biopolymers and Chemical Fibres
This work is licensed under the Creative Commons Attribution 3.0 License.